

Q.5 Using Block diagram reduction technique find the Transfer Function of the [L5,CO1] 10M system.

- Q.6 a. Give the block diagram reduction rules to find the transfer function of the system.
 b. List the properties of signal flow graph.
 [L1,C01] 4M
- Q.7 For the system represented in the given figure, determine transfer function [L3,CO1] 10M C(S)/R(S).

Q.8 Find the overall transfer function of the system whose signal flow graph is [L5, shown below.

Q.9 Obtain the transfer function of the system whose signal flow graph is shown [L3,CO1] 10M below.

[L5,CO1] 10M

Q.11 i) Define control systems?

[L1,CO1] 2M

ii) What is feedback? What type of feedback is employed in control systems? [L2,CO1] 2M
 iii) Define transfer function? [L1,CO1] 2M
 iv) What is block diagram? What are the basic components of block diagram? [L2,CO1] 2M
 v) Explain transmittance [L4,CO1] 2M

<u>UNIT-II</u> <u>TIME RESPONSE ANALYSIS</u>

Q.1	List out the time domain specifications and derive the expressions for Rise time, Peak time and Peak overshoot.	[L1,CO2]	10M
Q.2	Find all the time domain specifications for a unity feedback control system	[L2,CO2]	10M
	whose open loop transfer function is given by $G(S) = \frac{25}{S(S+5)}$.		
Q.3	A closed loop servo is represented by the differential equation: $\frac{d^2c}{dt^2} + \frac{8dc}{dt} =$	[L3,CO2]	10M
	64e . Where 'c' is the displacement of the output shaft, 'r' is the displacement		
	of the input shaft and $e = r - c$. Determine undamped natural frequency,		
	damping ratio and percentage maximum overshoot for unit step input.		

- Q.4 a. Measurements conducted on a servo mechanism, show the system response to [L3,CO2] 5M be c(t) = 1+0.2e^{-60t}- 1.2e^{-10t} When subject to a unit step input.Obtain an expression for closed loop transfer function, determine the undamped natural frequency, damping ratio?
 - b. For servo mechanisms with open loop transfer function given below what type [L3,CO2] 5M of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{10}{S^2(S+1)(S+2)}$$

Q.5 A unity feedback control system has an open loop transfer function, G(s) = [L5,CO2] 10M $\frac{10}{s(s+2)}$. Find the rise time, percentage overshoot, peak time and settling time

for a step input of 12 units.

- Q.6 Define steady state error? Derive the static error components for Type 0, Type [L1,CO2] 10M 1 &Type 2 systems?
- **Q.7** A positional control system with velocity feedback shown in figure. What is [L3,CO2] 10M the response c(t) to the unit step input. Given that damping ratio=0.5.Also determine rise time, peak time, maximum overshoot and settling time.

Q.8 a. A For servo mechanisms with open loop transfer function given below what [L3,CO2] 5M type of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{20(S+2)}{S(S+1)(S+3)}$$

b. Consider a unity feedback system with a closed loop transfer function $\underline{c(s)}$ = [L3,CO2] 5M

 $\frac{KS+b}{(S^2+aS+b)}$. Calculate open loop transfer function G(s). Show that steady state

error with unit ramp

input is given by $(\underline{a-K})$

Q.9

For a unity feedback control system the open loop transfer function [L3,CO2] 10M

$$G(S) = \frac{10(S+2)}{S^2(S+1)}.$$

(i) Determine the position, velocity and acceleration error constants.

(ii) The steady state error when the input is $\mathbf{R}(\mathbf{S}) = \frac{3}{S} - \frac{2}{S^2} + \frac{1}{3S^3}$.

Q.10	a.	What is the characteristic equation? List the significance of characteristic	[L1,CO2] 2M
	b.	equation. The system has $G(s) = \underline{K}$ with unity feedback where K & T are constant.	[L3,CO2] 8M
		S(1+ST) Determine the factor by which gain 'K' should be multiplied to reduce the overshot from 75% to 25%?		
Q.11	i)	How the system is classified depending on the value of damping ratio?	[L4,CO2] 2M
	ii)	List the time domain specifications?	[L1,CO2] 2M
	iii)	Define peak overshoot?	[L1,CO2] 2M
	iv)	Define accelerating error constant?	[L1,CO2] 2M
	v)	What is the need for a controller?	[L2,CO2] 2M
		<u>UNIT –III</u>		
		STABILITY ANALYSIS IN CONTROL SYSTEMS		
Q.1		With the help of Routh's stability criterion find the stability of the following [L5,CO3]	10M
		systems represented by the characteristic equations:		
		(a) $s^4 + 8 s^3 + 18 s^2 + 16s + 5 = 0$.		
		(b) $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0.$		
Q.2		With the help of Routh's stability criterion find the stability of the following [a systems represented by the characteristic equations:	L5,CO3]	10M
		(a) $s^5 + s^4 + 2 s^3 + 2 s^2 + 3s + 5 = 0$		
		(b) $9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$		
Q.3		The open loop Transfer function of a unity feedback control system is given [L3,CO3]	10M
		by $\mathbf{G}(\mathbf{s})\mathbf{H}(\mathbf{s}) = \frac{\mathbf{k}}{(S+2)(S+4)(S^2+6S+25)}$ Determine the value of K which will		
		cause sustained oscillations in the closed loop system and what is the		
		corresponding oscillation Frequency.		

		QUESTION BA	NK 2023-	24
Q.4		Determine the range of K for stability of unity feedback system whose open loop transfer function is $G(s) H(s) = \frac{K}{S(S+1)(S+2)}$ using Routh's stability criterion.	[L3,CO3]	10M
Q.5		Explain the procedure for constructing root locus.	[L2,CO3]	10M
Q.6		Sketch the root locus of the system whose open loop transfer function is $G(s) H(s) = \frac{K}{S(S+2)(S+4)}.$	[L3,CO3]	10M
Q.7		Sketch the root locus of the system whose open loop transfer function is $\mathbf{G(s)} \ \mathbf{H(s)} = \frac{K}{S(S^2 + 4S + 13)}$	[L3,CO3]	10 M
Q.8		Sketch the root locus of the system whose open loop transfer function is $\mathbf{G(s)} \ \mathbf{H(s)} = \frac{K \ (S+9)}{S(S^2+4S+11)}$	[L3,CO3]	10M
Q.9		Sketch the root locus of the system whose open loop transfer function is $\mathbf{G(s)} \ \mathbf{H(s)} = \frac{\mathbf{K}(S^2 + 6S + 25)}{S(S+1)(S+2)}$	[L3,CO3]	10M
Q.10		Sketch the root locus of the system whose open loop transfer function is $G(s)H(s) = \frac{K}{S(S^2+6S+10)}$	[L3,CO3]	10M
Q.11	i)	Explain BIBO stability?	[L12,CO3]	2M
	ii)	What is the necessary condition for stability?	[L2,CO3]	2M
	iii)	Define root locus?	[L1,CO3]	2M
	iv)	What is centroid? How the centroid is calculated?	[L2,CO3]	2M
	v)	What is limitedly stable system?	[L2,CO3]	2M
		<u>UNIT-IV</u>		
		FREQUENCY RESPONSE ANALYSIS		
Q.1		Sketch the Bode plot for the following transfer function $G(s)H(s) = \frac{K e^{-0.1s}}{S(S+1)(1+0.1S)}$	[L3,CO4]	10M
Q.2		Sketch the Bode plot for the system having the following transfer function $G(s) = \frac{15 (S+5)}{S(S^2 + 16S + 100)}$	[L3,CO4]	10M
<u>C01</u>	VTR	DL SYSTEMS	Page 6	

		QUESTION BA	NK 2023 -	·24
Q.3	a.	Define and derive the expression for resonant frequency.	[L1,CO4]	5M
	b.	Draw the magnitude bode plot for the system having the following	[L3,CO4]	5M
		transfer function: $G(s) H(s) = \frac{2000 (S+1)}{S(S+10) (S+40)}$		
Q.4		Derive the expressions for resonant peak and resonant frequency and	[L3,CO4]	10M
		hence establish the correlation between time response and frequency		
		response.		
Q.5		Draw the Bode plot for the following Transfer Function $G(s) H(s) = \frac{20(0.1S+1)}{S^2(0.2S+1)(0.02S+1)}$	[L3,CO4]	10M
		From the bode plot determine (a) Gain Margin (b) Phase Margin (c)		
		Comment on the stability		
Q.6	a.	Given ξ = 0.7 and ω_n = 10 rad/sec. Calculate resonant peak, resonant	[L3,CO4]	5M
		frequency and bandwidth.		
	b.	Sketch the polar plot for the open loop transfer function of a unity feedback	[L3,CO4]	5M
		system is given by $G(s) = \frac{1}{S(1+S)(1+2S)}$. Determine Gain Margin & Phase		
		Margin.		
Q.7		A system is given by $G(s) H(s) = \frac{(4S+1)}{S^2(S+1)(2S+1)}$ Sketch the nyquist plot and determine the stability of the system.	[L3,CO4]	10M
Q.8		Draw the Nyquist plot for the system whose open loop transfer function	[L3,CO4]	10M
		is, $G(s)H(s) = \frac{K}{S(S+2)(S+10)}$. Determine the range of K for which closed loop		
		system is stable.		
Q.9		Obtain the transfer function of Lead Compensator, draw pole-zero plot and write the procedure for design of Lead Compensator using Bode plot.	[L3,CO4]	10M
Q.10		Obtain the transfer function of Lag Compensator, draw pole-zero plot and write the procedure for design of Lag Compensator using Bode plot.	[L3,CO4]	10M
Q.11	i)	Define phase margine ?	[L1,CO4]	2M
	ii)	Write the expression for resonant peak and resonant frequency?	[L3,CO4]	2M
	iii)	What is phase and gain cross over frequency?	[L2,CO4]	2M
	iv)	What are the frequency domain specifications?	[L2,CO4]	2M
	v)	What is frequency response?	[L2,CO4]	2M

<u>UNIT-V</u>

STATE SPACE ANALYSIS

•				101 6
Q.1		Determine the Solution for Homogeneous and Non homogeneous State equations	[L3,CO5]	10M
Q.2		For the state equation: $\dot{X} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U$ with the unit step input	[L3,CO5]	10M
		and the initial conditions are $\mathbf{X}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Solve the following (a) State		
		transition matrix		
		(b) Solution of the state equation.		
Q.3		A system is characterized by the following state space equations:	[L3,CO5]	
		$\dot{X}_{1} = -3 \mathbf{x}_{1} + \mathbf{x}_{2}; \dot{X}_{2} = -2 \mathbf{x}_{1} + \mathbf{u}; \mathbf{Y} = \mathbf{x}_{1}$		
		(a) Find the transfer function of the system and Stability of the		5M
		system.		5M
		(b) Compute the STM		
Q.4	a.	State the properties of State Transition Matrix.	[L1,CO5]	5M
	b.	Diagonalize the following system matrix $A = \begin{pmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{pmatrix}$	[L3,CO5]	5M
Q.5	a.	Find state variable representation of an armature controlled D.C.motor.	[L2,CO5]	5M
	b.	A state model of a system is given as:	[L3,CO5]	5M
		• 0 1 0 0 X = (0 0 1)X + (0) U and Y = (1 0 0)X -6 -11 -6 1		
		Determine: (i) The Eigen Values. (ii) The State Transition Matrix.		
Q.6	a.	Derive the expression for the transfer function and poles of the system	[L3,CO5]	5M
		from the state model. $\overset{\bullet}{X} = Ax + Bu$ and $y = Cx + Du$		
	b.	Diagonalize the following system matrix A = $\begin{pmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \end{pmatrix}$ 1 -1 3	[L3,CO5]	5M
Q.7		Obtain a state model for the system whose Transfer function is given by	[L2,CO5]	10M
		G(s) H(s) = $\frac{(7S^2 + 12S + 8)}{(7S^2 + 12S + 8)}$		
		$(S^3+6S^2+11S+9)$		
Q.8	a.	State the properties of STM.	[L1,CO5]	3M

			QUESTION BANK	2023-2	24
	b.	For the state equation: $\dot{X} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbf{U}$ when, $\mathbf{X}(0) = \begin{pmatrix} 0 \\ 1 & 1 \end{pmatrix} \mathbf{U}$	=(). [L	.2,CO5]	7M
		Find the solution of the state equation for the unit step input			
Q.9	a.	Find the state model of the differential equation is	[L	2,CO5]	5M
		y + 2 y + 3 y + 4 y = u			
	b.	Diagonalize the following system matrix $A = \begin{pmatrix} 0 & 1 \\ 3 & 0 \\ -12 & -7 \end{pmatrix}$	0 [L 2) -6	.1,CO5]	5M
Q.10	a.	Define state, state variable, state equation.	[L	.1,CO5]	5M
	b.	Derive the expression for the transfer function from the state	e model. [L	1,CO5]	5M
		$\mathbf{\dot{X}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ and $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$			
Q.11	i)	List out the properties of STM?	[]	.1,CO5]	2M
	ii)	Write the state equation?	[]	.3,CO5]	2M
	iii)	Define state variable?	[]	.2,CO5]	2M
	iv)	What is Diagonalize matrix?	[[.2,CO5]	2M
	v)	Write the formula for solutions of state equation?	[]	.3,CO5]	2M

Prepared by: J.Gowrishankar & Hari

	QUESTION BAN	IK 20	23-24
	<u>UNIT –I</u>		
COM	NTROL SYSTEMS CONCEPTS		
1) In controlsystems the co	ontrol action is dependent on the desired output	[]
A) Open loop	B) Closed loop		
C) Both (A) & (B)	D) None		
2) The Transfer function is the ratio	of	[]
A) $L[O/P]$ to $L[I/P]$	B) L[I/P] to L[O/P] with Zero initial cond	itions	
C) $L[I/P]$ to $L[O/P]$	D) L[O/P] to L[I/P] with Zero initial cond	itions	
3) For Impulse input, the output resp	onse $C(s)$ is equal to.	[]
A) R (s)	B) E(s)		
C) G(s)	D) B(s)		
4) The mass will offer an opposing f	orce whichis proportionalof the body	[]
A) Displacement	B) Velocity		
C) Acceleration	D) None		
5) The Dash-pot has displacement at	both ends then the opposing force is proportional	to []
of the body			
A) Velocity	B)Differential Velocity		
C) Differential displacement	D) None		
6) Block diagrams can be used used	to represent	[]
A) Linear systems	B)Non-Linear systems		
C) Both (A) & (B)	D) None		
7) Three blocks with gains 2,-5and1	${f 0}$ are connected in parallel. The total gain is	[]
A) -100	B) -07		
C) 100	D) 07		
8) converts the angular	position of the shaft into electrical signal	[]
A) DCServomotorC) Tacho generator	B) AC ServomotorD) Synchro		
9) The C.E of an armature controlled	dc servomotor isorder equation	[]
A) First	B) Second		
C) Third	D) Zero		
r o F	$\begin{array}{c} 5 \\ 2 \\ -1 \\ -1 \\ -1 \end{array}$		
CONTROL SYSTEMS		Page	10

	QUESTION B	ANK 20	23-24
16) The dash-pot will offer an opposing	force which is proportionalof the body	[]
A) Velocity	B)Differential Velocity		
C) Differential displacement	D)None		
17) The viscous friction co-efficient, in	force-voltage analogy, is analogous to	[]
A)Charge	B) resistance		
C) reciprocal of inductance	D) reciprocal of conductance		
18) In force-voltageanalogy, velocity is	analogous to	[]
A) Current	B) charge		
C) inductance	D) capacitance		
19) AC servomotor differs with normal	induction motor in	[]
A) Small X/R ratio	B) large X/R ratio		
C) linear speed-torque	D) both A) and C)		
20) A.C. servomotor is basically a	motor	[]
A) Universal	B) single phase induction		
C) two phase induction	D) three phase induction		
21) Synchro is basicallya		[]
A)2-phaseIM	B) 3-phase IM		
C) 3-phase alternator	D) Transformer		
22) For a second order undamped system	m, the poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
23) AC servomotor differs with normal	inductionmotor in[]		
A) Small X/R ratio	B) large X/R ratio		
C) linear speed-torque	D) both (A) and (C)		
24) In force-currentanalogy, Mass elem	ent is equal to	[]
A) Resistance	B) Inductance		
C) Capacitance	D) Conductance		
25) The viscous friction co-efficient, in	force-voltage analogy, is analogous to	[]
A)Charge	B) resistance		
C) reciprocal of inductance	D) reciprocal of conductance		
26) In force-voltage analogy, displacem	ent is analogous to	[]
A) Current	B) charge		
C) inductance	D) capacitance		
27) In force-voltage analogy, Spring ele	ement is equal to	[]
CONTROL SYSTEMS		Page	e 12

	QUESTION F	3ANK	2023	3-24
	UNIT-II			
TIM	E RESPONSE ANALYSIS			
1) For Type-1 system the steady state er	ror due to step input is equal to	[]
A) Infinity	B) Zero			
C)One	D) Constant			
2) A system has the following $T.FG(s) =$	$= \frac{200(S+5)(S+50)}{S^4(S+10)(S^2+3S+10)}$			
The order and type of the system ar	e respectively	[]
A) 4& 7	B) 4& 9			
C) 7& 4`	D) 9& 4			
3) Which of the following systems is ge	nerally preferred	[]
A) Undamped	B) Under damped			
C) Critically damped	D) Over damped			
4) The damping frequency of oscillation	is given by	[]
A) $\mathbf{W}_{\mathbf{d}} = \mathbf{W}_{\mathbf{r}} \sqrt{1-\xi^2}$	B) $W_d=W_r\sqrt{1+\xi^2}$			
C) $W_d = W_n \sqrt{1-\xi^2}$	D) $W_d=W_n\sqrt{1+\xi^2}$			
5) For a second order critically damped system, the poles are		[]
A) Purely imaginary	B) complex conjugate			
C) real & equal	D) real & unequal			
5) The solution of the differential equati	on $x^2+2x+2=0$ is	[]
A) Oscillatory	B) over damped			
C) under damped	D) critically damped			
)Given a unity feedback system with C	G(s)=K/s(s+4), the value of K for damping	ratio of	0.5 is	
A)1	B)4	[]
C)16	D)64			
3)Due to the derivative control, the rise	time is	[]
A)Reduced	B) increased			
C) not effected	D) zero			
) The effect of addition of pole at origi	n, increases the system	[]
A) Order	B)Type			
C) Order and type	D) none			
10) The type 2 system hasa	at the origin.	[]
A) No net pole	B) net pole			
C) simple pole	D) two poles			
CONTROL SYSTEMS		F	2σe 1 ^ι	5

QU	ESTION BANK	2023	3-24
11) The position and velocity error constants of a type-2 system are		[]
A) Constant, constant B) constant, infinity			
C) zero, constant D) infinity, infinity			
12) Velocity error constant of a system is measured when the input to the	system is unit	[]
A) Parabolic B) ramp			
C) impulse D) step			
13)In case of type-1 system steady state error for parabolic input is		[]
A) Unity B) infinity			
C) zero D)10			
14) For a second order over damped system, the poles are		[]
A) Purely imaginary B) complex conjugate	;		
C) real & equal D) real & unequal			
15) Position error constant of a system is measured when the input tothesy	stem is unit	[]
A) Parabolic B) ramp			
C) impulse D) step			
16) For Type-1 system the steady state error due to step input is equal to		[]
A) Infinity B) Zero			
C)One D) Constant			
17) The positional error of the open loop transfer function $G(s) = 10/((s+2))$	(s+3)) with unit	у	
feedback system.		[]
A) 0.075 B) 1			
C) 0.375 D) 0.2			
18) The value of ξ of 0.6 in the step input of a 2 nd order system results in max	overshoot of	[]
A) 10 B) 8.54			
C) 9.44 D) 7.55			
19) Order of the given open loop transfer function G(s) = $\frac{K(s+2)}{s^2(s^2+2s+1)}$		[]
A) Zero B) one			
C)two D) four			
20) Consider a feedback control system with loop transfer function		[]
$G(s) = \frac{K(1+0.5s)}{s(1+s)(1+2s)}$ The type of the closed loop system is			
A) zero B) one			

QUESTION BANK 2023-24 C) two D) three GATE 1998 21) The settling time of 2nd order system is _____times the time constant of the system. ſ 1 A) One B)Two C) Four D) Six 22) For a second order under damped system, the poles are [] A) Purely imaginary B) complex conjugate C) real & equal D) real & unequal 23) The Laplace transform of impulse function is [] A) zero B) one C)infinity D) none 24) For the unity feedback control with $G(s) = 4/(S^2+8S+4)$, the damping ratio is ſ 1 A) 2 **B**)1 C) 0.707 D) 0.5 25) In time domain analysis response of the system varies w.r.t [] A) Time B) frequency C) both time and frequency D) constant 26) Undamped natural frequency for $S^2+2S+1=0$ is ſ 1 A) Zero B) one C)two D) infinity 27) Order of the given open loop transfer function G(s) = K/(S+1)ſ] A) Zero B) one C)two D) three 28) The effect of addition of pole atorigin, increases the system ſ 1 A) Order B)Type C) Order and type D) none 29) The type 1 system has ______at the origin. ſ 1 A) No net pole B) net pole D) two poles C) simple pole 30) Position error constant of a system is measured when the input to the system is unit __[1 A) Parabolic B) ramp C) impulse D) step 31) The steady state error due to a ramp input for a type two system is ſ 1 A) 0 B) infinity C)4 D)constant Page 17 CONTROL SYSTEMS

32). For a 2^{nd} order sys	tem with CLTF T(s)	= $1/(S^2+0.1S+1)$, the settlingtime for	5% band is[]
A)6		B)2		
C)3		D)4		
33) The steady state error	or of a stable 'type 0'	unity feedback system for a unitstep	function is []
A)0		B) 1/1+ <i>K</i> _P		
C)∞		D) 1/ <i>K</i> _P	GATE 199	0
34) A unity-feedback c	ontrol system has the	open-loop transfer function $G(s)$ =	$\frac{4(1+2s)}{s^2(s+2)}$ []
if the input to the syste	m is a unity ramp, the	e steady-state error will be		
A) 0		B) 0.5		
C) 2		D) Infinity	GATE 199	1
35) Type of the system	$givenG(s) = 2/S^2(2+S)$	S)is equal to	[]
A) Zero		B) one		
C)two		D) three		
36) If the characteristic	equation of a closed	-loop system is $s^2+2s+2=0$, then the	e system is[]
A) Overdamped	1	B) Critically damp	ed	
C) Under damp	ed	D) undamped	GATE 199	8
37) Consider a system	with the T.F G(s) = $\frac{1}{(K)}$	$\frac{(s+6)}{\zeta_s^2+s+6)}$. Its $\xi = 0.5$ then the value	e of K is []
A) 2/6		B) 3		
C) 1/6		D) 6	GATE 200	2
38) For a 2nd order sys	stem, damping ratio (a	ξ) is $0 < \xi < 1$, then the roots of the C	C.E are []
A) real but not	equal	B) real and equal		
C) complex con	njugates	D) imaginary	GATE 199	5
39) A casual system ha	ving the transfer func	ction G(s)= $\frac{1}{(s+2)}$ is excited with 10)u(t).	
The time at which	the output reaches 99	9% of its steady state value is	`[]
A) 2.7 sec		B) 2.5 sec		
C) 2.3 sec		D) 2.1 sec	GATE 200	4
40) Order of the given	open loop transfer fu	nction G(s) = $\frac{(s+2)}{s(s^2+2s+1)}$	[]
A) Zero	B) one	C) two D) t	three	
CONTROL SYSTEMS			Page	e 18

<u>UN</u> STABILITV ANALVSI	<u>NIT –III</u> IS IN CONTROL SYSTEMS		
1) When a system is excited by an unbounded in	but and produces an unbounded output		
Then thesystem is		, [1
A) Stable	B) unstable	L	J
C) conditionally stable	D) nothing can said about stability		
2) If there is a root locus on real axis between po	le and zero then there exist	ſ	1
A)Break-in point	B) breakaway point	L	-
C)Both	D) none		
3) The OLTF of a unity feedback control system	is $G(s)=K/(S+2)^2$ the CLTF will have		
poles at		[]
A) -2,-2	B) -2,-1		
C)-2 + j, -2 – j	D) -2, 2		
4) The necessary condition of the Routh Hurwitz	stability is	[]
A) Elements in the first column of the rou	th array is positive		
B) coefficients should be zero			
C) both A and B			
D) None			
5) The open loop transfer function of a unity feed	lback control system is given by		
$G(s) = \frac{5(S+1)}{S^2(S+2)}$. The stability characteristics of the o	open loop configuration.	[]
A) stable	B) unstable		
C) conditionally stable	D) marginally stable		
6) If the OLTF of an unity feedback system is the	e ration of numerator polynomial of de	gree 'm	,
And a denominator polynomial of degree 'n' then th	e integer n-m represent the number of	[]
A) Break away points	B) Unstablepoles		
C) Root locus branches	D) Asymptotes		
7) The open loop transfer function of the system	is given by G(s)= $\frac{K}{S(S+2)(S+4)}$.		
Themaximum Value of K for which the unity fee	dback system will be stable.	[]
A) 16	B) 32		
C) 48	D)64		
8) Adding pole resultsgain margin		[]
A) decrease	B) increase		
CONTROL SYSTEMS		Page	19

	QUESTION BAN	K 20	23-24
C)AorB 9) The rootlocus is a	D) none	[]
A) time domain approach	B) frequency domain approach	-	-
C) combination of both	D) None		
10) The OLTF of a unity feedback system	h is given as $G(s) = \frac{K(S+2)}{S(S^2+2S+2)}$.		
The angles of root locus Asymptotes are		[]
A)+90 ⁰ ,-90 ⁰	B)+60 ^{0,_} 60 ⁰		
C) $+120^{\circ}, -120^{\circ}$	D) $+360^{\circ}, -360^{\circ}$		
11) The no.of. roots of the equation $2S^4$ +	S^3+3 $S^2+5S+7=0$ that lies in the right half of	S-plane	e[]
A)0	B)1		
C)2	D)3		
12) Loop TF is K(S+1)(S+2))/((S+4)(S+6)) for K=0 closed loop poles are at.	[]
A) -1,-2	B)-4,-6		
C)∞, ∞	D)0,0		
13) The number of changes in first colum	n of Routh array represents	[]
A) Stability	B) unstability		
C) Number of roots lie on right sid	deof s-plane D) both b and c		
14) The stability of the system can be incr	reased by adding	[]
A) Pole	B) zero		
C) both	D) none		
15) The root locus of system with G(s) He	$(s)=K(S+1)/(S^2 (S+3.6)$ has how many asymptotic	ototes[]
A) one point	B) two points		
C) +j , -j	D) three points		
16) The roots of the characteristic equation	on lies on the left of S-plane, then system is	[]
A) stable	B) unstable		
C) conditionally stable	D) marginally stable		
17) The characteristic equation of a system	m is given by $S^4 + 8S^3 + 12S^2 + 8S + K = 0$. for the	e syster	n
To remain stable, the value of gain K s	hould be	[]
A) 0	B) 0 < K < 11		
C) K > 11	D) Positive		

	QUESTION BA	NK 20	23-24
18) The open loop transfer function of a unity fee	dback control system is given by	[]
$G(s)=5(S+1)/S^2$ (S+2). The stability characterist	tics of the closedloopconfiguration.		
A) Stable	B) unstable		
C) conditionally stable	D) marginally stable		
19) The characteristic equation of a feed back con	trol system is $2S^4 + S^3 + 3S^2 + 5S + 1$	l 0=0.	
The Number of roots in the right half of S plane are		[]
A)0	B)1		
C)2	D)3		
20) The root locus is		[]
A) an algebraic method	B) a graphical method		
C) combination of both	D)None		
21) Break points can be		[]
A) only real	B) only complex		
C) real or complex	D) None		
22) Asymptotes can intersect		[]
A) only on the negativerealaxis	B) only on the positive re	al axis	
C) anywhere on the real axis	D) imaginary axis		
23) The open loop transfer function of a system is	G(s)H(s)=k/s(s+1)(s+2). Its centroid	d is at s=	:
A)-2.5	B)-4	[]
C)-4.5	D)-1		
24) If the roots of characteristic equation lie on im	aginary axis the system is	[]
A) Stable	B) unstable		
C) Conditionally stable	D) marginally stable		
25) If first entry in any row of Routh array is nega	tive the system is	[]
A) StableB) unstable			
C) Conditionally stableD) marginally stable	le		
26) The number of changes in first column of Rou	th array represents	[]
A) StabilityB) unstability			
C) Number of roots lie on right sideof s-pl	aneD) both B and C		
27) By adding the pole in the transfer function, Th	ne rootlocus shift towards	[]
CONTROL SYSTEMS		Dag	21

QUESTION BANK 2023-24 A) Right half of S plane B) left half of S plane C) imaginary axis D) All 28) If the system output is finite for any finite input, then the system is ſ 1 A) Stable B) unstable C) conditionally stable D) nothing can said about stability ſ 29) Root loci of a system has three asymptotes the systemmay have 1 A) 3 poles and 1 zero B) 4 poles and 2 zeros C) 4 poles and 3 zeros D) 5 poles and 2 zeros 30) If the roots of the characteristic equation have negative real parts, then the system is 1 A) stable B) unstable C) conditionally stable D) marginally stable 31) Loop TF isfor K=0 closed looppoles are at. ſ 1 A)-1.-2 B)-4,-6 **C**) ∞ D)0,0 32) If there is a root locus on real axis between two zeros then there exist_____ [1 A)Break-in point B) breakaway point D) none C)Both 33) The number of roots of $s^3 + 5s^2 + 7s + 3 = 0$ in the left half of the s – plane is 1 ſ A) Zero B) One C) Two D) Three **GATE 1998** 34) An amplifier with resistive negative feedback has two left half plane poles in its open – loop transfer function. The amplifier [1 A) Will always be unstable at high frequency B) Will be stable for all frequency C) May be unstable, depending on the feedback factor D) Will oscillate at low frequency **GATE 2000** 35) The phase margin of a system with the open – loop transfer function $G(s)H(s) = \frac{(1-s)}{(s+1)(s+2)}$ [] A) 0^{0} B) 63.4° C) 90° D) ∞ **GATE 2002** 36) The open – loop transfer function of a unity – gain feedback control system is given by $T(s) = \frac{\kappa}{(s+1)(s+2)}$. The gain margin of the system in dB is given by [] (A) 0**(B)** 1 CONTROL SYSTEMS Page 22

	QUESTION BA	NK 20	23-24
(C) 20	(D) ∞ GA	TE 2006	6
37) The gain margin for the system with	open – loop transfer function $G(s)H(s)=2(1+s)$)/s ² is []
$(A) \infty$	(B) 0		
(C) 1	(D) $-\infty$ GATE 200	14	
38) If the closed – loop transfer function	of a control system is given as $T(s) = \frac{(s-s)}{(s+2)(s-s)}$	+3) , then	it is
		[]
(A) an unstable system	(B) an uncontrollable system		
(C) a minimum phase system	(D) a non – minimum phase system	GA7	ГЕ 2007
39) Consider a characteristic equation gi	ven by $3s^3 + 5s^2 + 6s + K + 10=0$. The cond	ition for	
stability is		[]
(A) K > 5	(B) - 10 < K		
(C) $K > -4$	(D) - 10 < K < -4	GAJ	ГЕ 1988
40) An electromechanical closed-loop co	ontrol system has the following characteristic	equation:	,
$s^{3} + 6Ks^{2} + (K + 2) + 8 = 0$. Where K is	the forward gain of the system. The condition	for close	ed
loop stability is:		[1
A)K = 0.528	B)2	_	-
C)3	D) none	GA]	ГЕ 199(
	UNIT-IV		
FREQUE	NCY RESPONSE ANALYSIS		
1) A system is unstable when		[]
A) $\omega_{gc} = \omega_{pc}$	B) $\omega_{\rm gc} < \omega_{\rm pc}$		
C)wgc>wpc	D) $\omega_{gc} = \omega_{pc} = 0$		
2) ξ = 0, Mr is given by		[]
A)Infinity	B)0		
C)1	D)4		
3)The slope of $(1+j\omega)$ is		[]
A) +20db	B) +40db		
C)-40db	D)-20db		
4) A unity feedback system G(s)=(10(s+2)	2))/(s^2 (s+1)(s^2 +2s+2)).The slope of the low fi	requency	
asymptote is		[]
A)-20dB/dec	B)-40dB/dec		
C)-80dB/dec	D)80dB/dec		
		Dage	22
CONTROL 2121 EM2		Page	23

	QUESTION BANK 2	023-24
5) The damping frequency of oscillation is	s given by []
$A) \mathbf{W}_{d} = \mathbf{W}_{r} \mathbf{V} 1 - \boldsymbol{\xi}^{2}$	B) W _d = W _r √1 +ξ ²	
C)W _d =W _n V1-ξ ²	D) W _d =W _n ν1 +ξ ²	
6) The effect of addition of pole increases	the system []
A) Order	B)Type	
C) Order and type	D) none	
7) At the gain crossover frequency]]
A)G(jw)H(jw)=0dB	B) $G(jw)H(jw)=1 dB$	
C) $G(jw)H(jw)=-20 dB$	D)G(jw)H(jw)=20dB	
8) The reciprocal of the magnitude of OLT	IF at phase cross over frequency is called []
A) Phase margin	B)gain margin	
C) Phase plot	D) Magnitude plot	
9) Angle of G(jw) H(jw) =0at	Ι]
A) gain cross over frequency	B) Phase cross over frequency	
C)Both	D)none	
10) From the bode plots it is observed that	the gain cross over frequency is greater than	
phase cross overfrequency. The system is	called	1
A) Stable	B)Marginally stable	-
C) Conditionally stable	D) Unstable	
11) From the bode plots it is observed that	the gain cross over frequency is lesser than	
phase crossover frequency. The system is	called	1
A) Stable	B)Marginally stable	L
C) Conditionally stable	D) Unstable	
12) For the pole factor $\frac{1}{(S+5)}$ the cornerfreq	uency is []
A)1/5	B)5	
C)-1/5	D)-5	
13) At the phase crossover frequency $w=1$	0 rad / sec, $G(jw)H(jw)=15$ Db .It's gain margin is	5[]
A) 15 dB	B) 0dB	
C)-15dB	D) cannot be predicted	
14) The frequency at which the -3db mag	nitude is zero is called	1
A)Cut-offrate	B)Cut-offResonant	L

QUESTION BANK	20	23-24
	[]
B) +40db		
D)-20db		
	[]
B) Phase cross over frequency		
D) none		
	[]
B) G(j ω)		
D) -20log ₁₀ $G(j \omega)$		
$n G(s) = K(S+2) / S^2 (S^2+2S+1)]$	[]
B) one		
D) four		
equal to	[]
B) one		
D) three		
times the time constant of the system.	[]
B)Two D) Six		
poles are	[]
B) complex conjugate		
D) real & unequal		
	[]
B)wgc <wpc< td=""><td></td><td></td></wpc<>		
D)wgc=wpc=0		
G(jω)H(jω)is	[]
B) equal to-1		
D) <-1		
	[]
B) +40db		
D)-20db		
cy at which the phase of $G(j\omega)$ is	[]
B)90°		
D) 180°		
	QUESTION BANK B) +40db D)-20db B) Phase cross over frequency D) none B) G(j ω) D) -20log ₁₀ G(j ω) n G(s) = K(S+2) / S ² (S ² +2S+1)] B) one D) four equal to B) one D) three times the time constant of the system. B)Two D) Six spoles are B) complex conjugate D) real & unequal B) ω gc< ω pc D) ω gc= ω pc=0 G(j ω)H(j ω)is B) equal to-1 D) <-1 B) +40db D)-20db cy at which the phase ofG(j ω) is B)90° D) 180°	QUESTION BANK20[][]B) +40db[]D)-20db[]B) Phase cross over frequency[]D) none[]B) G(j ω)[]D) -20log ₁₀ G(j ω)[]n G(s) = K(S+2) / S ² (S ² +2S+1)][]B) one[]D) four[]equal to[]B) one[]D) three[]stimes the time constant of the system.[]B)Two[]D) Six[]poles are[]B) complex conjugate[]D) real & unequal[]B) $\omegagc<\omegapc$ []D) $\omegagc=\omegapc=0$ []G(j ω)H(j ω)is[]B) equal to-1[]D) <-1

	QUESTION BANK	۲ 202	3-24
26) The sinusoidal transfer function is obtained by 1	replacing 's' by	[]
A)jω	$B)(j\omega)^2$		
$C)(-j\omega)^2$	D)-jω		
27) The effect of addition of pole increases the syste	em	[]
A) Order	B)Type		
C) Order and type	D) none		
28) A second order overall transfer functionis given	by4/(S^2 +2S+4) . Its resonant		
frequencyis		[]
A)2	B)1.414		
C)1.732	D)3		
29) The system with the open loop transfer function	$G(s)H(s)=1/s(s^2+s+1)$ has a		
gain margin of		[]
A) – 6 dB	B)0Db		
C)3.5Db	D) 6 Db		
30) A system has fourteen poles and two zeros. Its h	nigh frequency asymptote in its magn	itude pl	lot
having a slope of:		[]
A) – 40 dB/decade	B) – 240 dB/decade		
C) – 280 dB/decade	D)-320dB/decade		
31) The polar plot $G(s)=10/(S+1)^3$ of intercepts real	axis at $\omega = \omega_0$. Then, the real partand	ω_0 are	
respectivelygiven by:		[]
(A) – 2.5, 1	(B)–5,0.5		
(C)–5,1	(D) – 5, 2		
32) From the Nicholas chart one can determine the	following quantities pertaining to a c	losed lo	op
system:		[]
(A) Magnitude and phase	(B) Band width		
(C) Only magnitude33) The open-loop transfer function of a feedback co	(D) Only phase GATE ontrol system is $G(s)=1/(S+1)^3$. The	; 1989 gain m	argin
of the system is (A) 2	(B)4	[]
(C) 8	(D) 16 GATE	1991	
34) Non-minimum phase transfer function is define	d as the transfer function	[]
(A) which has zero in the right-half s-plane(B) which has zero only in the left-half s-plane	ine		
CONTROL SYSTEMS		Page 2	26

	QUESTIC)N BANK	2023-24
 (C) which has poles in the right-1 (D) which has poles in the left-ha 35) The Nyquist plot of loop transfer fur 	half s-plane alf s-plane action $G(s)H(s)$ of a closed loop control	system pas	ses
through the point $(-1, j 0)$ in the $G(s)H$	(s)plane.		
The phase margin of the system is of the	e system is	[]	
A) 0 ⁰	B) 45 ⁰		
C) 90 ⁰	D) 180 ⁰	GATE:	2004
36) The Nyquist plot of G(S) H(S) for a	closed loop control system, passed throu	ıgh (-1,j 0)	
pointinGHplane. The gain margin of the	e system in dB is equal to	[]
(A) infinite	(B) greater than zero	С	
(C) less than zero	(D) zero	(GATE 2006
37) In the Bode – plot of a unity feedback	k control system, the value of phase of C	G(jω) at the	gain cross
over frequency is -125° . The phase mar	gin of the system is	[]
$(A)-125^{0}$	$(B) - 55^{0}$		
$(C)55^{0}$	(D)125 ⁰	(GATE 1998
38) In a Bode magnitude plot, which one	e of the following slopes would be exhib	vited athigh	frequency
by 4th order all-pole system?[]			
A) – 80 dB/decade	B) – 40 dB/decade		
C) + 40 dB/decade	D) + 80 dB/decade	GATE:	2014
39) For the equation, $s^3 - 4s^2 + s + 6 = 0$ t	he number of roots in the left half ofs -p	lane will b	e[]
A) Zero	B) One		
C) Two	D) Three	GATE:	2004
40) The gain margin of a unity feed back	c control system with the OLTF $G(s)$ =s+1	1/s ² []
A) 0	B) 1/√2		
C) √ 2	D) 3	GATE:	2005
	<u>UNIT-V</u>		
STATE SPACE AN	NALYSIS OF CONTINUOUS SYSTE	<u>MS</u>	
1. $\emptyset(s)$ is called		[]
A) system matrix	B) state transition matrix		
C) Resolvent Matrix	D) Resolution Matrix		
CONTROL SYSTEMS		F	Page 27

	QUESTION BAN	К 20	23-24
2. $\emptyset(t)$ is called		[]
A)system matrix	B) state transition matrix		
C) model matrix	D) input matrix		
3) The smallest set of variable of a state is	called	[]
A) State	B)conditionofstate		
C) Eigen values	D) state variables		
4) Solution of the state equation with conc	eding the input is called	[]
A) Homogenous solution	B) non homogeneous solution		
C) both	D) none		
5) $X(t) = AX(t) + BU(t)$ is called		[]
A) state model	B)stateequation		
C) output equation	D)all		
6) Given a system represented by equation	as $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U(t)$ and		
Y=1 $0X(t)$ The equivalent transfer fu	nction representation G(s) of the system is	[]
A) $G(s)=1/s^2+5s+2$	B) $G(s)=1/s^2+3s+2$		
C) $G(s)=3/s^2+5s+2$	D)none		
7) Given a system represented by equation	as $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$		
The state transition matrix of the system	n is	[]
A) e^{2t} I	B) e ^{-2t} I		
C) I	D) none		
8) Which among the following is a unique	model of a system?]]
A) Transfer functionC) Both a and b9) According to the property of state transi	B) State variable D) None of the above tion method, e ⁰ is equalto	ſ	1
A)I	B)A	Ľ	-
C)e ^{-At}	D)-e ^{At}		
10) Which mechanism in control engineeri	ng impliesan ability to measure the state by ta	aking	
measurements at output?		[]
A) Controllability	B) Observability		
C) Differentiability	D) Adaptability		
11) State model representation is possible	using	[]
A) Physical variables	B) Phase variables		
C) Canonical state variables	D) All of the above		
CONTROL SYSTEMS		Pag	e 28

12) Which among the following constitute the state	model of a system in addition to stat	e equati	ions?
A) Input equations	B) Output equations		
C) State trajectory	D) State vector	[]
13) Which among the following plays a crucial role	e in determining the state of dynamic	system	?
A) State variables	B) State vector		
C) State space	D) State scalar	[]
14) Which among the following are the interconnec	cted units of state diagram representat	ion?	
A) Scalars	B) Adders		
C) Integrators	D) All of the above	[]
15) State space analysis is applicable even if the in	itial conditions are	[]
A)Zero	B) Non-zero		
C)Equal	D)Notequal		
16) Conventional control theory is applicable to	systems	[]
A)SISO	B) MIMO		
C) Time varying	D) Non-linear		
17) The number of elements in the state vector is r	efered toof the system	[]
A) Order	B) Characteristic Equation		
C) Type	D)all		
18) In $X(t) = AX(t) + BU(t)A$ is known as		[]
A) System Matrix	B)InputMatrix		
C) Output Matrix	D) Transmission Matrix		
19) In $X(t) = AX(t) + BU(t)\mathbf{B}$ isknown as		[]
A) System Matrix	B)InputMatrix		
C) Output Matrix	D) Transmission Matrix		
20) In $Y(t) = CX(t) + DU(t)C$ isknown as		[]
A) System MatrixC) Output Matrix	B)InputMatrix D) Transmission Matrix		
21) $InY(t) = CX(t) + DU(t)D$ isknown as		[]
A) System Matrix	B)InputMatrix		
C) Output Matrix	D) Transmission Matrix		
22) The state equations and the output equations to	gether are called	[]
A) state model	B)stateequation		
C) output equation	D)Dynamic Equation		

	QUESTION BANK	K 202	23-24
23) The characteristic equation of a state model is	given by	[]
A) $ \lambda I - A = 0$	B) $ \lambda I + A = 0$		
$C) \lambda I-A =1$	D)0		
24) The roots of the characteristic equation are ref	ferred to asof the matrix A.	[]
A) state model	B) eigen value		
C) output equation	D)all		
25) The process of obtaining the state diagram of	a system from its transfer function is	[]
A) Diagonalization	B)Phasevariable		
C) Decomposition	D)all		
26) The matrix formed by placing the eigen vector	rs together in column-wise is called	[]
A) System Matrix	B) Modal Matrix		
C) Transmission Matrix	D)all		
27) Which theorm states that every square matrix	A satisfies its own characteristic equat	ion.[]
A) Cayley-Hamilton	B) Kalman's		
C) Gilberts	D)all		
28) The concepts of controllability & observability	v were introduced by	[]
A) Cayley-Hamilton	B)Kalman's		
C) Gilberts	D) all		
29) Controllability & observability can also be dete	ermined bymethod.	[]
A) Cayley-Hamilton	B) Kalman's		
C) Gilberts	D) all		
30) The transfer function of a s/m can be obtained	from its state model by using the	[]
formula $C(s)/R(s)=$			
$A)C(SI-A)^{-1}B+D$	B)C(SI-A)B+D		
C)C(SI-A) ⁻¹ 31) State model is said to be stable if allits eigen v	D)all values have	[]
A) positivereal parts	B)Negative real parts		
C)Both	D)None		
32) A state variable system $X'(t) = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} X$	$(t) + \frac{1}{0}U(t)$ with the initial condition		
$X(0) = [-1 3]^T$ and the unit step input $u(t)$ has the s	state transition matrix	[]
A) $\begin{bmatrix} 1 & 1/3(1-e-3t) \\ 0 & e-3t \end{bmatrix}$ (B)	$\begin{bmatrix} 1 & \frac{1}{3}(e-t-e-3t) \\ 0 & e-3t \end{bmatrix}$		

C) $\begin{bmatrix} 1 & 1/3(e3 - t - e - 3t) \\ 0 & e - 3t \end{bmatrix}$	$(D)\begin{bmatrix} 1 & 1/3(1-e-3t) \\ 0 & e-t \end{bmatrix}$	GATE 2005	
33) The number of ways in which S'	ΓM can be computed is	ſ	1
A) 2 B) 3	C) 5 D) 6	L	1
34) The state variable description of	a linear autonomous system is, $X^{\circ} = A$	$\mathbf{A}\mathbf{X}$ where \mathbf{X} is the two)
dimensional state vector and $A = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\\0 \end{bmatrix}$. The roots of the characteristic equ	ation are []
A) -2 and +2	B) $-j2$ and $+j2$	2	
C) -2 and -2	D) +2 and +2	GATE	2004
35) The state transition matrix for th	e system $X^{\circ} = AX$ with initial state $X(0)$	0) is []
A) $(sI - A)^{-1}$	B) $e^{At}X(0)$		
C) $L^{-1}[(sI-A)^{-1}]$	D) $L^{-1}[(sI - A)]$	GATE 20	002
36) For the system, $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$	$X(t) + \frac{1}{0}U(t)$ which of the following	statements is true []
A) The system is controllable	e but unstable		
B) The system is uncontrolla	ble and unstable		
C) The system is controllable	e and stable		
D) The system is uncontrolla	ble and stable	GAT	E 2002
37) The transfer function of the system	em describedby $d^2y/dt^2+dy/dt=du/dt+2$	u	
with <i>u</i> asinput and <i>y</i> asoutputis		[]
A) $s + 2/s^2 + s$	B) $s+1/s^2+s$		
C) $2/s^2 + s$	D)2s/s ² +s		
38) Given a system represented by e	quations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} X(t) + \frac{1}{1}U(t)$	(t) with u as unit implies the transformed state of u and u as the transformed state of u and u a	pulse
and with zero initial state, the o	utput y, becomes	[]
A) $2e^{2t}$	B) $4e^{2t}$		
C) $2e^{4t}$	D) $4e^{4t}$	GATE 2002	
39) Given a system represented by e	quations $X'(t) = \begin{bmatrix} -1 & 2 \\ 0 & 2 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} t$	<i>J</i> (<i>t</i>) []
A) Stable and controllable	B) Stable but uncontro	ollable	
C) Unstable but controllable	D) Unstable and unco	ntrollable GATE 201	10
40) A function $y(t)$ satisfies the follow	wing differential equation : dy(t)/dt+y	$\phi(t) = \delta(t)$ where $\delta(t)$ is	the
delta function. Assuming zero initia	condition, and denoting the unit step	function by $u(t)$,	
y(t) can be of the form		[]
A) e^t	B) <i>e</i> ^{-<i>t</i>}		

CONTROL SYSTEMS

Page 31

	QUES	TION BANK 2023-24
C) $e^t u(t)$	D) $e^{-t}u(t)$	GATE 2008
	Prepared by: J.G	owrishankar & Hari