Mehatma Basweshwar Education Society's M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE Mumbai, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere) P.O.Box No. 112, Barshi Road, LATUR-413 531 (Maharashtra)

DTE Code : EN2129

Estd :1983

'NAAC' Accredited

Internal Quality Assurance Cell (IQAC) Department of Electronics Engineering

Academic Year 2023-24

The Following Faculties were assigned to the undersigned as Mentors for the year 2023-24 academic Session.

S.NO	Class	Mentor	Roll no.	Signature
1	SE	Prof.J.S.Hatte	1 to 25	Halle.
2	SE	Prof.S.S.Killarikar	26 to 50	On Ac
3	SE	Prof.V.K.Shah	51 to 76	Neves
4	TE	Prof.S.S Mudda	1 to 24	Brundel
5	TE	Prof.U.B.Solapurkar	25 to 48	
6	TE	Prof.V.S Bale	49 to 73	· ØV
7	BE	Prof.S.S.Shetkar	1 to 21	brent
8	BE	Prof.R.O.Sudke	22 to 43	D28/11
9	BE	Prof.R.P.Khanapure	44 to 63	Myay .

HOD

Prof. S S Killarikar

Mahatma Basweshwar Education Society's

M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE Mumbai, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere) P.O.Box No. 112, Barshi Road, LATUR-413 531 (Maharashtra)

'NAAC' Accredited

DTE Code : EN2129

Internal Quality Assurance Cell (IQAC)

Department of Electronics Engineering Academic Year 2023-24

Part-II

The Following Faculties were assigned to the undersigned as Mentors for the year 2023-24 Part-II academic Session

S.NO	Class	Mentor	Roll no.	Signature
1	SE	Prof.V.K.Shah	1 to 17	npul
2	SE	Prof.S.S.Killarikar	18 to 34	Birrys
3	SE	Prof.J.S.Hatte	35 to 52	Hall.
4	SE	Prof.R.P.Khanapure	53 to 71	Any
5	TE	Dr.S.R.Halhalli	1 to 17	K
6	TE,	Dr.S.R.Dhanure	18 to 34	Bruddy
7	ТE	Prof.V.S Bale	35 to 50	alman
8	TE	Prof.U.B.Solapurkar	51 to 65	K.
9	BE	Prof.R.O.Sudke	1 to 32	ter
10	BE	Prof.S.S.Shetkar	33 to 63	Sweit

HOD Prof. S S Killarikar

Ay-2023-2

Mahatma Basweshwar Education Society's

M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE <u>Mumbai</u>, Affiliated to Dr. <u>Babasaheb Ambedkar</u> Technological University, <u>Lonere</u>) <u>P.O.Box</u> No. 112, <u>Barshi Road</u>, LATUR-413 531 (Maharashtra)

DTE Code : EN2129

Internal Quality Assurance Cell (IQAC)

'NAAC' Accredited

Department of INFORMATION TECHNOLGY Academic Year 2023-24

The Following Faculties were assigned to the undersigned as Mentors for the year 2023-24 academic Session. Part - I

S.NO	Class	Mentor	Roll no.	Signature
1	SE	Dr. HAIGARE N. M.	1 to 25	Hour .
2	SE	Prof. KAUTHALE S. M.	26 to 50	Shuthe
3	SE	Prof. CHOURE K. A.	51 to 77	Bat
4	TE	Prof. KAMBLE N. P.	1 to 25	Hault
5	TE	Prof. PATIL O. M.	26 to 50	or.
6	TE	Prof. PATIL A.A.	51 to 75	Shwind
7	BTech.	Prof. KAUTHALE S. M.	1 to 25	Shith
8	BTech.	Prof. CHOURE K. A.	26 to 50	Bart.
9	BTech.	Prof. BIRADAR D. V.	51 to 72	pys.

HOI

Prof. BIRADAR D V

1 all 1 - L -Civil 2023 Part IA

Notice

Dt. 28-08-2023

As a part of academic monitoring the following faculty members are asked to officiate as class as shown below for the academic year 2023-24, Part-I

(r	entor			at the SMontor
Sr. No.	Class	Roll No	Mentor	Signature of Mentor
		1 to 22	Prof. A.A. Hamane	lun
		23 to 44	Prof. M.P.Kariappa	for lestete
1	SE (Civil)	45 to 65	Prof. G.N.Shete	-lebuth
		66 to 87	Prof. S.G.CHAUDHARI	for lestele Cubrite In lisate
		1 to 14	Prof. S.G. Deshpande	3754
		15 to 28	Prof. A.A. Hamane	Marrier.
2	TE (Civil)	29 to 42	Prof. A.N. Shaikh	The
		43 to 56	Prof. WALE.S.V	tool
		57 to 71	Prof. R.P. Rajput	Rapt
		1 to 20	Prof. A.N. Shaikh	Thu
		21 to 40	Prof. WALE.S.V	FORT'S
3 BE (Civil)	BE (CIVII)	41 to 60	Prof. M.P.Kariappa	fr. alsheti
		61 to 78	Prof. R.P. Rajput	Bush

lesset

H.O.D. (Civil Engineering Dept.)

Mahatma Basweshwar Education Society's

1ª

M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE Mumbai, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere) P.O.Box No. 112, Barshi Road, LATUR-413 531 (Maharashtra)

Department of Electronics and Telecommunication Engineering

Academic Year: 2024-25 Part-I

ee	
ent	
M-	
tor	
len	
Σ	

Class	Class Representatives	Name of the Mentor	Roll no.	Signature	
	Vishnu Gupta	Prof. V K Shah	1 to 20	mark	
SY	Revati Gadekar	Dr. J S Hatte	21 to 40	I me	
		Prof. Patil V P	41 to 60	Valey.	
		Prof. V N Jadhav	61 to 80	Carlacter	
		Prof. S S Killarikar	1 to 24) O M O	
λI	Ayanıle Kartık Santosh	Dr. S R Dhanure	25 to 48	Rowert	
	Suryawanshi Vaishnavi Rajendra	Prof. V S Bale	49 to 72		
			t	D	
	Dantik Mali	Prof. R P Khanapure	1 to 22	Š	
ВΥ	FIGUN IVIAU	Prof. S.S Shetkar	23 to 44	for Flerib	
	Pratiksha Hudge	Prof. Ravindra Randale	45 to 66	RAM	7
				· Free	· 7

Mentor - N

EK

HoD ENT

14161120 Ay-2024-25, P Mech. Dept

M. S. BIDVE ENGINEERING COLLEGE.

LATUR-413 531 (Maharashtra) R (Approved by AICTE, New Delhi & DTE Mumbai, Affiliated to DBATU, Lonere) 'NAAC' Accredited

M.B. EDUCATION SOCIETY'S

DEPARTMENT OF MECHANICAL ENGINEERING ACADEMIC YEAR: 2024-2025 Part-I

Men	tor	-M	entee	Lis	t
			-		

Sr.No.	Class	Name Of Mentor	Roll No.
1	S.Y.(Mech) Sem-III	Prof.S.M.Bembalkar	01 to 20
2	S.Y.(Mech) Sem-III	Prof.N.R.Gir	21 to 40
3	T.Y.(Mech) Sem-V	Prof.V.G.Kasbe	01 to 5
4	T.Y.(Mech) Sem-V	Prof.Dr.S.G.Mantri	21 to 30
5	B.Tech. Final Year (MECH)Sem-VII	Prof.N.R.Gir	01 to 22
6	B.Tech. Final Year (MECH)Sem-VII	Prof.Patil S.	23to 44

IQAC Dept. Coordinator

, r C

Head of Department

Mentor- Ment EC dep Ay 20

Mahatma Basweshwar Education Society's

M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE Mumbai _ Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere)

P.O.Box No. 112, Barshi Road, LATUR-413 531 (Maharashtra)

'NAAC' Accredited

DTE Code : EN2129

Internal Quality Assurance Cell (IQAC) **Department of Electronics Engineering** Academic Year 2023-24

The Following Faculties were assigned to the undersigned as Mentors for the year 2023-24 academic Session.

S.NO	Class	Mentor	Roll no.	Signature
1	SE	Prof.J.S.Hatte	1 to 25	Fall
2	SE	Prof.S.S.Killarikar	26 to 50	8mm
3	SE	Prof.V.K.Shah	51 to 76	Neul
4	TE	Prof.S.S Mudda	1 to 24	Bruchele
5	TE	Prof.U.B.Solapurkar	25 to 48	1/1
6	TE	Prof.V.S Bale	49 to 73	
7	BE	Prof.S.S.Shetkar	1 to 21	Anoute
8	BE	Prof.R.O.Sudke	22 to 43	D28/11
9	BE	Prof.R.P.Khanapure	44 to 63	Muay.

HOD Prof. S S Killarikar

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE-RAIGAD- 402 103

M.S.BIDVE ENGG.COLLEGE,LATUR DEPT.OF ELECTRONICS ENGINEERING Special program for slow and fast learners Academic Year (2023-2024) Part-I Odd Semester

Notice

All the students of FINAL YEAR (EC) are informed that slow and fast learners groups are created on the basis of marks(less than 40%) obtained in CA1 of various subjects. Following is the list of Roll numbers of slow learners. Kindly contact to subject Teachers for more details.

Subject	Slow learners Roll numbers	Faculty Signature
EE&F	518518191251391	ED T
MCN	1,4,6,8,9,25,34, 42,45,46.00,6163	Part
CMOS	45,46,8,925,34,42	Jonet
DS&A	42, 45, 46, 50, 61, 62	Halfs
ESD	1, 4, 6, 8, 9, 25, 34 42, 45, 46, 50, 61.63	Caray

Date: 04/10/2023

HOD EC Dept.

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE-RAIGAD- 402 103

M.S.BIDVE ENGG.COLLEGE,LATUR DEPT.OF ELECTRONICS ENGINEERING Special program for slow and fast learners Academic Year (2023-2024) Part-I Odd Semester

Notice

All the students of TY (EC) are informed that slow and fast learners groups are created on the basis of marks(less than 40%) obtained in CA1 of various subjects. Following is the list of Roll numbers of slow learners. Kindly contact to subject Teachers for more details.

Subject	Slow learners Roll numbers	Faculty Signature
VKS EMFT	$\begin{array}{c}1, 3, 6, 9, 10, 14, 17, \\18, 24, 27, 34, 36, 38, \\43, 50, 55, 59, 61, 66, 67\end{array}$	Aprile
C C DSP	2,6,7,9,8,21, 34,43,45,61,68	AL.
AC	4,7,8,9,10,13,15,17, 18,21,27,29,31,34,35, 36,38,59,61,63,68,72	Marter 123
DSD	7,9,13,15,17,18,27,34 36,38,59,68,72,73	Anwell 4
ME	R-N. 8,9,10,1)+12,34. 36	Sm

Dur

Date: 04/10/2023

HOD EC Dept.

M LUIDLE BLAVEIF W2 COLLECE, LANA

DEPARTMENT OF LACING COLLEGE, LATUR-413 531(Maharashtra) DEPARTMENT OF ELECTRONICS

Marks out "C" TW of (20%) W.S. Bidve Enginaciating Cottebe Electronics Department LATUR - 413 512 00) 27 00/ Attendanc 0 O 7 80 J 100 20 1 I 20 FACULTY: Prof. Malad A R Ø Õ Ø % 0 ∞ 80 G.O.H. Attendanc 0 0 10 0 Total 5 10 10 10 V 10 10 20 9 σ œ ATTENDANCE REPORT OF THEORY CLASS ~ Q D 0 0 0 9 Q 0 0 4 12/15/63 0 Δ ە ACADEMIC YEAR : 2023-²⁴ PART : I CLASS : S (EC) SUBJECT : E M-TI Period No. t Ð 0 đ 0 Р 0 0 đ 9 S 0 4 [4]15/53 ¢ 4 0_ 2 D 4 Q. 0 4 0 4 0 0 2/12/23 9 0 0 9 9 0 15/15/53 đ 0 ვ 0 đ 0 0 C 9 0 0 0 1115/53 9 0 0 ٩ 4 0 0 2 C1 (L 0 Û 0 9 2 2/21/6 9 0 4 0 ς-4 Grangathade vishakha choudhati satisha Ruthod Rameshurze chevale sakshi Gaddime vishal Munde mayue Maka A.R. Avanile kapyk Kadam Shivali Telange Rohit Name of Student shaikh usomg Rothod · Ajay swami Aditt ANACI DATE-----> ,i 91 32 ROH NO 5 02 L M SR.NO. 22 20 0 $\widehat{\mathbf{m}}$ \bigcirc T 10

ATTENDANCE REPORT OF THEORY CLASS ATTENDANCE REPORT OF THEORY CLASS Date::::::::::::::::::::::::::::::::::::	ANDER POINT		Σ	S BIDV	M.B.Edu E ENGI MJR-413	M.S BIDVE ENGINEERING LAT JR-413 531(Maharashra) DEPARTMENT OF ELECTRCNICS	ty's IG COL rashtra) TRCNICS	LEGE,							
Date		AT EMIC YEAR : 2022-24PART : T CLASS	ΤΕΝD		REPC	DRT O	F THE	ORY 0	SLASS FAC	ULTY	Prof.		H	, '	
Name of student12346678910 \mathbb{C} Rathod A JayPPPPPPPP \mathbb{C} <th></th> <th>DATE></th> <th></th> <th>[[[[5]53</th> <th>5/15/5</th> <th>82/21/6</th> <th>2/21/17</th> <th>12/15/5</th> <th></th> <th></th> <th></th> <th></th> <th>Total</th> <th></th> <th></th>		DATE>		[[[[5]53	5/15/5	82/21/6	2/21/17	12/15/5					Total		
Rathod AjayPPPPPPPPRathod RameshwarePPPPPPPSSDurecewad YogeshwarePPPPPPSSSMasure AmitPPPPPPPSSSTadhav MaheshPPPPPPPSSSBolegaveShreeyaPPPPPPPSSRandme 'TyottiPPPPPPPPSSRandme 'TyottiPPPPPPPPPSSMunde ManuePPPPPPPPPPSSMunde ManuePPPPPPPPPSSSMunde Manue'PPPPPPPPPPSSSMunde Manue'PPPPPPPPPPSSSPPPPPPPPPPPSSSPPPPPPPPPPPSSSPPPPPPPPP <th>O</th> <th>Name of Student</th> <th>-</th> <th>0</th> <th>n</th> <th>4</th> <th>S Perio</th> <th>e vo</th> <th>~</th> <th>00</th> <th>თ</th> <th></th> <th></th> <th></th> <th>of(20%)</th>	O	Name of Student	-	0	n	4	S Perio	e vo	~	00	თ				of(20%)
Rathod RameshwarePPPPPPDurekewad YogeshwarePPPPPPFFMasure AmitPPPPPPFFFMasure AmitPPPPPPFFFMasure AmitPPPPPPFFFMasure AmitPPPPPPPFFJadhav MaheshPPPPPPPFFRolegave SheeyaPPPPPPPFFRoutesinePPPPPPPFFFRoutesinePPPPPPPPFFFRoutesinePPPPPPPPFFFRoutesinePPPPPPPPFFFRouteTPPPPPPPPFFFRoutePPPPPPPPPFFFRoutePPPPPPPPPPFFFRoutePPPPPPPPPPF <td></td> <td>Rathod Ajay</td> <td>Q</td> <td>d</td> <td>J</td> <td>Q</td> <td>Q</td> <td>Q</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Rathod Ajay	Q	d	J	Q	Q	Q							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Rathod Rameshwar	C	C	đ	Q	D	D					10	84	
83h P P P P P 84 83h P P P P P 84 87h P P P P P 84 87h P P P P P 84 87h P P P P 84 87h P P P P 84 87h P P P P 84 0H P P P P 84 0H P P P P 10 10 0H P P P P 10 10 10 0H P P P P 10 10 10 10 0H P P P P 10 10 10 10 0H P P P P 10 10 10 10 10 1 P P P P P 10 <td>0</td> <td>DUELEWAD YOGESHWAF</td> <td>d</td> <td>C</td> <td>9</td> <td>٩</td> <td>J</td> <td>D</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>84</td> <td></td>	0	DUELEWAD YOGESHWAF	d	C	9	٩	J	D					10	84	
Jadhav maheshPPP<		nasure Amit	d	D	2	Q	đ	Р	-				20		
Bolegave Sheeya P P P P P P P P P P P P P P P P P P P	0	Jadhav mahesh	0	D	đ	C	d	đ					10	57	4
Pacti Shubham P P P P P P P P P P P P P P P P P P P	\sim	BOLEBAVE SHEEYA	J	٩	D	Р	d	d					0		
Kaname TyoH P <td< td=""><td></td><td>Patil Shubham</td><td>C</td><td>D</td><td>Д</td><td>9</td><td>4</td><td>Р</td><td></td><td></td><td></td><td></td><td>K</td><td></td><td></td></td<>		Patil Shubham	C	D	Д	9	4	Р					K		
Munde Mayutei P P P P P P P P P P P P P P P P P P P		Kaname TyoH	Q	٩	٩	L	¢	J					20	78	
		munde mayuei	C	9	٩	Q	J	J	1				6	00	
Electronics Depent															
Electronics Depart												Z	S	0	
		Jourse Strands										Elec.	tronics	Departing	College 512

A file Bouls - Dough

VI.B Education Society's M.S BIDVE ENGINEERING COLLEGE, LATUR-4*3 531(IMaharashira) DEPARTIMENT OF ELECTRONICS

ATTENDANCE REPORT OF THEORY CLASS

			100		ר. כ	7	- 1							
	DATE>	2/11/91	211112	211110 211118 211115	21110	2 11 17	5/11/53					Total	%	"C" TW
			١		a	Period No.						Attenuance e out of	Attendanc	
SR.NO.	Name of Student	۲	7	n	4	5	9	7	œ	თ	10	40	0	(20%)
2	tate shantanu	9	2	C	C	٩	9					9	001	
6	molegave vikas	D	Q	Q	đ	٩	Q					ſſ	84	
$\tilde{\mathbb{C}}$		0	D	d	Q	¢	A					K	57	-
10	mali Peatik	Q	d	d	d	¢	Q					9	00	
	Gadekar Tejas	Q	Q	d	d	d	C				10	LC	84	:
00	Shaikh Umae	d	d	C	C	Q	L					10	T Ø	
5	Hakke Yashwant	0	C	Q	Р	J	٩					Ŷ	001	
34	34 Kunal Icadam	J	Q	J	D	J	D					9	001	
36	Gunjotkat Vaibhav	0	0	0	D	D	C					Q	001	
3	mane yash	0	Ł	C	0_	٩	C					\mathcal{D}	84	
6		C	Δ	C	J	Δ	D					I	00	
0	68 Athaev Mheter	d	σ	Р	d	C	Q					U	001	
20	PEAVAS ROHAN	0	Q	Р	J	a.	4					5	48	
5	LOXMI POU	9	C	q	\triangleleft	C C	ط					5	84	
												1	0.0 H	namp
	Coure der											Bidve Fidve	Electronics Device College Electronics Engineering College	ng Coll

W.B BIDVE ENGINE Societys M.S BIDVE ENGINEERING COLLEGE, LATUR-413 531(Maharashira) DEPARTIMENT OF ELECTRCNICS

	CLASS	1-70		UBJEC		57		FAC	FACULTY: Prof. U. D. JOIUT WENDE	Prof.	\sum	0.00	3	Ter
	DATE	5211115	EC111/	62/11	6211110	52/11/1	82/11/2					7,041		
		71	IJ	8	50	Period No.	No.						% Attendanc	2
SR.NO.	Name of Student	Ţ	7	m	4	2	9	2	∞	6	10		Φ	(20%)
2 Bat	Batkate Peatik	d	٩	٩.	٩	q.	d	-				0	100	
SUR DUR	Suewase Rushikesh	9	Q	٩	C	Œ	a					20	7	
Tat	Tate Shantanu	9	Ł	Q	a	d	C					R	48	
Ba	malegave vikas	Q	C	٩	Ł	C	d					K	50	
8 540	shaikh Umae	Q	0	d	D	¢	Q					K	78	4
J.T.	Tiwati Veushalj	2	Q	٩	Q	d	ſ					20	57	
34 KUr	kunal kadam	D	٩	٩	C	Q	J					20	78	
43 ShO	Sharkh TOSHIF	C	4	à	٩	C	D					9	100	
HOJ C	45 Patil Jadhan maheshwar	C	C	D	Р	J	¢					10	7 8	
tom	61 tromat Waghmatr	σ	J	D	٩	Р	q					9	001	
Atr	68 Athaev mhetee	J	d	£	٩	Р	d					5	84	
											Č	t	COH	-+mer
Sold Bar	20										du	actron	Electronics Depending College	ing Con
NJ P												Sidve	SKAVE TRUT AND STAR	195

E														
THE PAIR	Attine of country and	Μ.	M.S. BIDVE ENGINEERING COLLEGE, LATUR-413 531(Maharashtra) DEPARTIAENT OF ELECTRCNICS	M.B.Edu E ENGI ATUR-413 ARTMENT	VIB.Education Society's IDVE ENGINEERING COLI LATUR-413 531(Maharashtra) DEPARTMENT OF ELECTRONICS	ty's IG COL rashtra) TRCNICS	LEGE,				•			
ACAL	ACADEMIC VEAD	ATTENDANCE REPORT OF THEORY CLASS	ANCE	REPC	RT OI	F THE	ORY	CLAS!	S			-		
	CLASS : 2023-24PART : L CLASS : BY		(Ec)subject	SUBJE	CT : C	:C WO	S	FAC	SULT	FACULTY: Prof.		shetkae	18 5.5	50
	DATE>	52111/07	52111123	52/11/23	82111/82	52111153 52111153	52111153					Total	2	"C" TW
SR.NO.	. Name of Student	~	0	, n	4	5 Period	6 . 6	-	∞	თ	10		Attendanc e	of (20%)
-	Bagwan AEbaz	0-	Q	٩	Q	٩						L	9/0	
4		0_	. 0	. a	- Q_	- £	0						57	
9	Peasad.	Q	đ	C	Q	Q	¢					J	10	
\otimes		C	Q	¢	C	Q_	J					2	72	
01	Savyasachi k.	Q	D	D	Q	đ	C			:		10		
2	25 kambale salshi	Q.	C	d	Р	Q	Œ					20	84	
9 C	kambale swati	Q	C	Q	G	٩	C					5	00	
42		ð	С	Р	¢	Q	C					10	T S	
5	Phad Rohit	J	Q	Р	Q	Ģ	C				3	2	78	
46	Solanke mahesh	¢	C	J	4	4	C					20	48	
0		0	Q	C	d	Œ	d					8	172	
6	mugale keishna	2	٩	C	С	٩	Ł				K		84	
d C		2	0	C	Q	<u>ل</u>	đ	_				5	A	
											3			
	E .											0.1	H.O.Department	
										or.	Electro	Engine	Electronics M.S. Sidve Engineering Unics M.S. Sidve Engineering 512	27
	Prof or shotrax s.s.								Contraction of the second			401	and the spectrum of the	

|--|

. M.B.Education Society's M.S BIDVE ENGINEERING COLLEGE, LATUR-413 531(Maharashtra) DEPARTMENT OF ELECTRCNICS

y

CLASS	
RT OF THEORY CLASS	
ICE REPORT	
ATTENDAN	

ACAD	EMIC YEAR :2023-24 PART : T CLASS :	BY (E C	SUBJE	CT ;	D54	Z	SS: BY (EC) SUBJECT: D54 A FAC	ULTY	Prof.	FACULTY: Prof. Hatte	¥		
	DATE	52/11/02	51111.53	E2/11/07	52/11/\$	5211158	A 11153					Total	%	"C" TW Marks out
		3	3	0	2	Perio						e out of	Attendanc	of
RONNO.	o .	-7	5	ო	4	5	9	7	œ	6	10	()		(20%)
_	Bagwan AEbaz	Q	Q	٩	٩	٩	9					0	00	
7	Anurrag Bajpai	Q	9	¢	Q	d	æ					4	67	
9	Preasad vaijuade	9	d	C	0	Æ	C	•				10	27	
\odot	chavan sushant	2	d	D	9	Ł	D					K	84	
6	Savyosachi Dhanonjay	Q	C	D	d	Q	ď					20	72	
25	kambale sakshi	J	Q	Q	d	٩	¢				Ŷ		00	
34	kambale swati	Q	J	Ł	D	d	Ð					5	84	
42	Giei Ankita	0	Ð	J	Q	J	C				20		54	
15	Phad Rohit	Q	Q	Р	0	C	Р				0	01 0	0	
46	Solonke mahesh	C	Q	٩	Œ	d	Q				5	2	T	
50	Akash Jadhan	C	C	đ	đ	٩	J				0	2	0 0	
Ţ	MUDALE REISHNO	Q	Q	Q	Q	4	C				20	84	J	
6.9	shalth Aman	Q	C	Q	C	Р	D				Л	78	1	
											H		H.C.D. H.	đ
	¢.× \									R	ectron,	1000	Electronica Concerting Conces	2
											A. A	A. H.	LATUR ALS	
	2 40		CONTRACTOR OF STATES	the little states	and the second second	and the second se	and the second	Contraction of the		A THE COLOR	State States	and the second		

Sector and the sector of the

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE-RAIGAD- 402 103

M.S.BIDVE ENGG.COLLEGE,LATUR DEPT.OF ELECTRONICS ENGINEERING Special program for slow and fast learners Academic Year (2023-2024) Part-I Odd Semester

Notice

All the students of SY (EC) are informed that slow and fast learners groups are created on the basis of marks(less than 40%) obtained in CA1 of various subjects. Following is the list of Roll numbers of slow learners. Kindly contact to subject Teachers for more details.

	Subject	Slow learners Roll numbers	Faculty Signature
XXS	EDC	2,3,5,8,11,16,24, 27,36,38,52,56 60,66,71	Neule
(FA)	DE	10, 13, 20, 32, 39, 41, 55, 56, 60, 75	A. C.
JAAN	NT	10,13,25,27,39,48, 55,56,75,8	Falle
	EM-III	02,5,10, 13,20,22,32, 41, (54,65,75,76	Ayalo

MAT, 1/1

Date: 04/10/2023

HOD EC Dept.

Mahatma Basweshwar Education Society's

M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE Mumbai, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere) P.O.Box No. 112, Barshi Road, LATUR-413 531 (Maharashtra)

Estd :1983

'NAAC' Accredited

Ec dept.

Mentor-Mentee AY- 2023-24, P.

DTE Code : EN2129

Internal Quality Assurance Cell (IQAC)

Department of Electronics Engineering Academic Year 2023-24

Part-II

The Following Faculties were assigned to the undersigned as Mentors for the year 2023-24 Part-II academic Session

S.NO	Class	Mentor	Roll no.	Signature
1	SE	Prof.V.K.Shah	1 to 17	neul
2	SE	Prof.S.S.Killarikar	18 to 34	Sirves
3	SE	Prof.J.S.Hatte	35 to 52	gjaup.
4	SE	Prof.R.P.Khanapure	53 to 71	Army
5	TE	Dr.S.R.Halhalli	1 to 17	K
6	TE	Dr.S.R.Dhanure	18 to 34	Bruchty
7	TE	Prof.V.S Bale	35 to 50	Munny
8	TE	Prof.U.B.Solapurkar	51 to 65	Ň
9	BE	Prof.R.O.Sudke	1 to 32	ter
10	BE	Prof.S.S.Shetkar	33 to 63	Awate

HOD Prof. S S Killarikar

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE-RAIGAD- 402 103

M.S.BIDVE ENGG.COLLEGE,LATUR DEPT.OF ELECTRONICS ENGINEERING

Academic Year (2023-2024) Part-II

Notice

All the students of Second Year (EC) are informed that slow and fast learners groups are created on the basis of marks(less than 40%) obtained in MSE of various subjects. Following is the list of Roll numbers of slow learners. Kindly contact to subject Teachers for more details.

Subject	Slow learners Roll numbers	Faculty Signature
PT&RP	02,03,04,05,06, 07,08,09,11,13,15,17 51,54,58	18,20,21,23,26,32, 33,34,35,36,39,46,45 ,70. Auto
BHR	10, 13, 29, .	Prof. Killankars. S.
DE COA	5, 16, 20,38, 52,55, 59 70.	
585	2,3,4,18,20,21	

HOD EC Dept.

dectro M.S.Lkive

LATIN

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE-**RAIGAD-402103**

M.S.BIDVE ENGG.COLLEGE,LATUR **DEPT.OF ELECTRONICS ENGINEERING**

Academic Year (2023-2024) Part-II

Notice

All the students of Third YEAR (EC) are informed that slow and fast learners groups are created on the basis of marks(less than 40%) obtained in MSE of various subjects. Following is the list of Roll numbers of slow learners. Kindly contact to subject Teachers for more details.

	Subject	Slow learners Roll numbers	Faculty Signature
	Control systim	61, 64, 66 02, 13, 14, 29, 31, 49	Dr. S.S. Myddq.
	Pigital Signal Processing	$ \begin{array}{r} 16,17,20,29,30,31\\ 32,33,35,36,55,57\\ 7c-38,55,57 \end{array} $	OV
	Microprocessors Microcontrolless.	02,13,16,17,20,29 32,33,35,36,55.57	Br. shetkar S.S.
	Comunication Engineering	02, 13, 20, 23, 29 31, 32, 35, 38, 57	pr. suresh Halhalli
E S	Employability & Rill development	02,13,23.20.29, 30,31,32.33.35.36	UBS/JSH.
F	Power Electronics	02,13,14,16,17,20 23,29,30,31,33,55	NBS JRPK.

Date:

HOD EC Dept.

M.B.Education Society's M.S BIDVE ENGINEERING COLLEGE, LATUR-413 531(Maharashtra) DEPARTMENT OF ELECTRONICS

101	and when the			ARTMEN			s							
ACAD	PEMIC YEAR :2023-24 PART TT OLAN	TEND	ANCE	REPO	ORT C	OF THE	EORY	CLAS	S					
	ACADEMIC YEAR :2023-24 PART : II CLASS : 67 (EC) SUBJECT : PT & R P FACULTY: Prof. J.S. Hotte													
	DATE>	614124	1214121	914124	20/4124	2/4/24								
SR.NO.			2	5	a	0	d No.				-	Total Attendan	Attendanc	"C" TW Marks out
Rolln	Name of Student	1	2	3	4	5	6	7	8	9	10	e out of 5	e	of (20%)
2	Avanile Kastik	P	Ρ	Ρ	A	Ρ							2	
3	GliEi sakshi	P	P	P	P	P						4	80	
4	Potil Rutuja	A		P	P	P						5	100 80	
5	Graddime vishal	P	P	P	P	P						5	100	
6	more Pratiksha	P	A	P	Ρ	A						3	60	
18	Mane Nikita	P	P	Ρ	Ρ	P						5	100	
20	shaikh Usama	Ρ	Ρ	Ρ	A	P						4	80	
21	Deshpande disha	P	P	P	Ρ	Ρ						5	100	
23	Jadhav PEatik	P	A	P	Ρ	A						3	60	
26	wadkat Sneha	P	P	Ρ	Ρ	A						4	80	
32	Koli Rahu)	Ρ	Р	P	A	ρ						4	80	
7	Ustuel Diksha	Ρ	Ρ	Ρ	A	P						4	80	
8	Rainale Shivani	P	P	P	Ρ	A		20	19 194			4	80	
9	Ripaidat Peaniali	Ρ	P	P	A	P				*5(44)34		4	80	
11	mule vishal potters)	P	A	٩	Ρ	A	A. 8 X	Kiri An	100.000 M - 2	hệ Calle ti ti n	Ç.	4	80	
' 1	mule vishal Houth							Sr						

		A LEINE DIATER NO CHI STATUS MITTE
NSTS VI	UNITA .	A SPICE

W.B.Education Societys M.S.BIDVE ENGINEERING COLLEGE, LATUR-413 531(Maharashtra) DEPARTMENT OF ELECTRCNICS

Attendanc et concert "C" TW of (20%) China China 5.2 09 E. 001 001 0 80 Φ \bigotimes^{\bigcirc} 0 Total Attendanc Bole e out of NOV: Sillie . \Box S 10 0 10 J T 2 9 FACULTY: Prof. б ∞ ATTENDANCE REPORT OF THEORY CLASS 7 9 Period No. 9 0 ſ J S 0 C 9 Q 0 C ¢ 4 9 £ 9 Q 9 A ٩_ 3 0 C 0 4 Q 2 9 0 0 0 Prof V.S. 12910 0 0 0 ~ 21 Deshpande Disha Ayanile Kattik shailth Usoma Name of Student mane Nikita Patil Rutuja Girei sakshi 20 SR.NO. \sim $\tilde{\otimes}$ C J

A LEINE BAR

W.B. BIDVE ENGINEERING COLLEGE, LATUR-413 531(Maharashira) DEPARTMENT OF ELECTRCNICS

Marks out "C" TW of (20%) Electronice Department Ś 5 000 Attendanc \bigcirc 0 0 0 0 \bigcirc \bigcirc \bigcirc 0 \bigcirc % ð ACADEMIC YEAR :2023-24PART IL CLASS : TY (EC)SUBJECT : MP & MC FACULTY: Prof. Shet KOE 8 ð \bigcirc 0 9 80 0 00 00 $\hat{\mathbb{W}}$ \bigotimes 0 O.HA _ -Attendanc e out of Total 11 10 J J J J LC J J 10 I 10 J 10 6 ∞ ATTENDANCE REPORT OF THEORY CLASS ~ Period No. 9 0 đ 0 Q 0 4 0 I 0 1 0 0 S C 9 0 22/4/20 0 0 0 C 4 0 9 Q Q_ D 0 0 C 0 0 21412 0 9 0 0 Œ 3 9 Ф_ Ł Q 4 \bigcirc đ 0 0 () 0 20/2/35 Q 0 2 0 0 Q. 5 0 Q 0 4 781918 Ţ 0 0 Q ~ SUEY awanshi sandhya Avanti suzyawanshi soudhyatoni shélat Lathangove Payal Sandhya Ghuge chate muktobai Tiwati Veushali Bhatkate PEath Kunal Isadam Name of Student Patt thus hi mati PEatik Shewti DATE-----> TOSHI SR.NO. 9 5 5 202 20 2 0 2 3 9 t 3 \mathbb{C} 3 C 3

Prof. Dr. Shelton S.S.

Notice for slow learners

Dt. 06-05-2024

Following roll no are observed that they are slow learns for the academic year 2023-24, Part-II

Sr. No.	Class	Roll No
1	SE (Civil)	1,4,7,14, 69
2	TE (Civil)	04,08,22 27,49,60 61
3	BE (Civil)	07,25,31, 45,53,65 68

H.O.D.

(Civil Engineering Dept.)

Methodologies to Identify and support slow learner students and encourage advanced learner students Preface: Department of civil Engineering is very sensitive to understand the students learning abilities. Efforts are made to raise the learning levels of both weak learners.

The following mechanism is used for identification of learner types.

> Objectives: The objective of such assessment process of the learning levels of the students is:

> To identify the factors affecting the student's performance

 \succ To analyse them with respect to the departmental assessment process.

> After identification and analysis, to provide a proper solution for improving their performance and build a successful career.

 \succ To provide a desirable and gracious solution both for the slow learners and advanced learners to avoid any discrimination between them and they must take interest to reach up to a position in due course of time where both the group feel at balance with each other.

As per Gardener's theory of multiple intelligence, it's important to identify the intelligence level of the students and incorporate it with blooms taxonomy to teach the subject accordingly, however due to a large number of students and many subjects, emphasis is given to two categories weak students and bright students

The slow learner students are identified based by every class coordinator on the basis of following parameters:

1. Class test results

2. Attendance

3. Observations by Class coordinators, subject teachers in class & lab.

Student-Centric Strategy to support slow learners:

• Question bank is prepared for the weak students on important and challenging topics along with solutions and university marking scheme.

• Assignments.

• Motivate weak students to ask questions in class to clear their doubts, eventually building their confidence.

• Encourage weak students to attend tutorials and assist them to solve and practice more numerical.

• In the remedial classes' students interact with each other and exchange knowledge, solution methods along with the faculty member as well.

M.B. EDUCATION SOCIETY'S

M. S. BIDVE ENGINEERING COLLEGE,

LATUR-413 531 (Maharashtra)

(Approved by AICTE, New Delhi & DTE Mumbai, Affiliated to DBATU, Lonere)

'NAAC' Accredited

INTERNAL QUALITY ASSURANCE CELL (IQAC)

ASSIGNMENT ATTENDANCE SHEET

	ACADEMIC YEAR -24 Semester Odd	Depar	rtment of	GVIL									
	ACADEMIC YEAR 2013 - 24 Semester : Odd / E	Even CLAS	SS:	191102121		ГY :					BATCH:		_
Roll.No.	Name of the student	Experiment/ Assignment 1	Experiment/	Experiment/ Assignment 3	Experiment/	1 Experiment/ Assignment 5	Experiment/	Experiment/	Experiment/	Experiment/			entee .
		/		/loongranterit, e	Assignment +			Assignment 7	Assignment 8	Assignment 9	Assignment 10	0 out of	%
01	shalkh A.T	Sharken	Shailtr	Y In the	10h - 114	SIGNATURES	S OF STUDENTS					+	+
04	Sayyad M.A	Shqikm	AT	Dha AT	Aiz	ļ'	'	/	1/				
07	Sound E T	Young	den-	Along	Jany.		1		1			<u> </u>	+
10	Nartone ANI	Sarrag	394408	Samas	Sanyad				1	/	++		+
Ga	Accomentations	stomof	plant	Nonet	Abreary	1							+
05	Shaikh A. J. Sayyad M. A. Sayyad F. I. Narhare A. N. Ansarwadekor K. K.	2/all	kaif	Kart	Kourf -	1							+
			, , ,			+							+
	1		1										
			1				ł					/	
	11						·]	
					· · · · · · · · · · · · · · · · · · ·								
		++											
				l	i								
				i	·								
		<u> </u>	I	I									
		1	I										
		[]											
		l											

Gorth

List of slow learners

Operating System

All the students listed below got less than 4 marks in **CA1 examination**. They should submit assignment-1 on or before 08/03/2024.

Sr. No.	Roll No.	Name of Student	Marks	Sign
1	6	RATHOD PREETI PARSHURAM	AB	
	15	KATE MANSI SURYAKANT	03	Macistre
3	20	KARANDE YASHASHRI KISHOR	AB	Yashahri
4	28	WAGHMARE ANIKET ANGAD	03	Achilles
5	36	JAJU PRIYANKA SANJAY	AB	
6	43	JOSHI ABHIJEET PRAVIN	03	Charles.
7	44	ANDHALE PRAJWAL NAMDEV	AB	1. 1.5.11
8	47	GUTTE ABAJI PANDIT	AB	(Absil 11)
9	58	KADAM AKASH SHIVAJI	02	Madorit
10	63	HARDE VASUDHA VISHNUDAS	AB	Variaba
11	66	SOLANKE SHANKAR SADASHIV	AB	A
12	67	BEDADE ARYAN MADHAV	03	and the second s
13			nin.	

Jubject faultz Conjaz S.S.) Ì

HOD

Manateus Baawanneen Stucetion Booisty a

M. S. BIDVE ENGINEERING COLLEGE,

Noneventing AIC 15 New Central & DITE Mumber: Attiliated to Dr. Diabasement Archerology Technology out Jinc westig 08.684

P.O. Box No. 112, Barshi Road, LATUR-413 531 (Maharashtre

'NAAC' Accredited

OTE Code : EN2120

Internal Quality Assurance Cell (IOAC)

Department of computer Sci. & Engg. List of slow learners of Operating System

Sr. No.	Roll. No.	Name of Student	Signatur
i	4	GARAD GANESH SANJAY	Langs
2	õ	RATHOD PREETI PARSHURAM	nnin an an ann an ann an ann an ann an ann an a
2	14	GHODKE AMAN ANANT	Amen
4	27	SONWALKAR ANURAG PRAKASH	A 114/246
5	28	WAGHMARE ANIKET ANGAD	Tanci
ó	35	BIRAJDAR SUDARSHAN ASHOK	ac Jay
7	36	JAJU PRIYANKA SANJAY	
8	37	GADDIME SWARUP SUDHAKAR	
9	38	KANADE SHIVENDRA SHIVPUTRA	- Junet
and the second	39	CHINCHANSURE PRAJWAL JITENDRA	- All
proside. Brites		SABNE ANKIT MADHUKAR	- ASTA
121		JOSHI ABHIJEET PRAVIN	
1	44	ANDHALE PRAJWAL NAMDEV	<u>0430-</u>
100	49	NILANGE MAHESH SANTOSH	
15	56	GURME MAHESH SHAM	Mas
16	57	SAGRE SHWETA KALLAPPA	nobeth
17	58 1	ADAM AKASH SHIVAJI	States
18		BEDADE ARYAN MADHAV	1 Marshow
19	68 N	MALWAD VIKAS DNYANRAJ	LEZ.

All the students listed above got less than 8 marks in MSE examination. They should submit Mid Semester Paper on or bei

Subjectrating (Cryac S. S.)

AON

Mahatma Basweehwar Education Society 5 M. S. BIDVE ENGINEERING COLLEGE, Approved by AtC FL, New Delhi & DFC, Number, Altihisted to Dr. Babasabeti An Lonkar Technological University - one

P.O.Box No. 112 Baishi Road LATUR 412.531 Maharashtra

'NAAC' Accredited

DTE Code : EN2129

Internal Quality Assurance Cell (OAC)

Department of computer Sci. & Engg. List of slow learners of Operating System

Sr. No.	Roll	Name of Student	Signature
1	4	GARAD GANESH SANJAY	Janesh
3	20	KARANDE YASHASHRI KISHOR	Yash-304
3	29	WAGHMARE RONAK GOVIND	Thus
4	36	JAJU PRIYANKA SANJAY	Hallmannan ann an Anna an Anna ann an A
5	-38	KANADE SHIVENDRA SHIVPUTRA	Koni-A
6	14	ANDHALE PRAJWAL NAMDEV	
7	15	CHIRKE DINESH TUKARAM	02249
8	56	GURME MAHESH SHAM	(meipiter)
9	0.0	SOLANKE SHANKAR SADASHIV	
1 (BEDADE ARYAN MADHAV	
[]	68	MALWAD VIKAS DNYANRAJ	V. Solo

All the students listed above got less than 4 marks in CA2 examination. They should submit Mid Semester Paper on or before 20/05/

Subject Faculty (Crujaz S.S.)

HOD.

Mahatma Baawaahwar Education Society's M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE <u>Mumbai</u>, Afhiliated to Dr. <u>Bobasaheb Ambedkar</u> Technological University, Lonere) <u>P.O.Box</u> No. 112, <u>Barshi Road</u>, LATUR-413 531 (Maharashtra) 'NAAC' Accredited DTE C

DTE Code : EN2123

Internal Quality Assurance Cell (IQAC)

Department of computer Sci. & Engg. List of slow learners of Design and Analysis of Algorithm

Sr. No.	Roll	Name of Student			Signature
1		GARAD GANESH SANJAY		20 5/24	
2		KARANDE YASHASHRI KISHOR	Absent	29)5124	Helsey
3		WAGHMARE RONAK GOVIND	Absent	28/5/24	Junk
4		CHINCHANSURE PRAJWAL JITENDRA	0	21-9-24	The
5		MALWAD VIKAS DNYANRAJ	3	29-5-24	methid.

All the students listed below got less than 4 marks in CA2 examination. They should submit Mid Semester Paper on or before 20/05/2024.

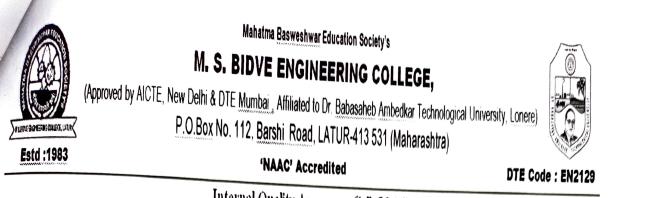
Mahatma Basweshwar Education Society's

M. S. BIDVE ENGINEERING COLLEGE,

(Approved by AICTE, New Delhi & DTE Mumbal, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere) P.O.Box No. 112, Barshi Road, LATUR-413 531 (Maharashtra)

Estd :1983

'NAAC' Accredited


Internal Quality Assurance Cell (IQAC)

Department of computer Sci. & Engg. List of slow learners of Design and Analysis of Algorithm

Sr. No.	Roll. No.	Name of Student	Marks	Detecto
1	4	GARAD GANESH SANJAY	5	Date of S Signatur
2	25	BHADADE SURAJ SURESH		20/s/24 Ganent
3	28	WAGHMARE ANIKET ANGAD	4	Istosla franci
4	35	BIRAJDAR SUDARSHAN ASHOK	4	17/05/24 Brulat
5	37	GADDIME SWARUP SUDHAKAR	6	17/05/24 Brulas
6		CHINCHANSURE PRAJWAL JITENDRA	2	
. 7		SABNE ANKIT MADHUKAR	0	17/05/24 (K-)
8	43	JOSHI ABHIJEET PRAVIN	6	16/5/24 dalba.
9	58	KADAM AKASH SHIVAJI	5	16/05/24 Alashe
10	63	HARDE VASUDHA VISHNUDAS		20/05/24 Harudha-
11		BEDADE ARYAN MADHAV	l	10/06/24

All the students listed below got less than 10 marks in MSE examination. They should submit Mid Semester Paper on or before 16/05/2

Busha Subject Facult

Internal Quality Assurance Cell (IQAC)

Department of Computer Science and Engineering

List of slow learners of Discrete mathematics

-	Roll No.	Name of the Student	Sign	Date
	63	HARDE VASUDHA VISHNUDAS	Jasuetos	15/10/22
		MAIND RIYAZ KHAJAMAINODDIN	100	15/10/23
I				

Note:- Students listed abovegot less than 8 marks . They should submit Mid Semester Paper on or before 15/10/2:

Subject Faculty

- N

n () - 2

DR.BABASAHEB AMBEDKAR TECHNOLOGICAL UNI VERSITY, LONERE -RAIGAD- 402 103

M.S. BIDVE ENGG.COLLEGE,LATUR

DEPT.OF MECHANICAL ENGINEERING Special program for slow and fast learners Academic Year (2023-2024) Odd Semester Post

Notice

All the students of Final Year Mechanical Engg. are informed that slow and fast learners groups are created on basis of marks obtained in Mid-semester Examination of various subjects. Following is the of Roll numbers of slow learners(less than 40% marks). Kindly contact to subject Teachers for more details.

Subject	Slow learners roll numbers	Faculty Signature
Mechatronics	1, 2, 4, 5, 14, 15, 16, 18, 19, 20, 22, 25, 26, 35, 36, 38, 39, 43, 45, 47, 50, 52	NF
Industrial Engineering and Management	02,04, 5,6,8,9,11,12,13,14,15,16 17 to 22, 24 1028, 29, 30,35 to 37, 40,43 45,47, 50, 57, 52, 53	A
Open Elective-III (Entrepreneurship Development)	11,12,16,18 20, 22,24 25,2630 32135,38,39,45,47,51,52,53.	Jugar
Elective-V (Non-conventional Machining)	01,02,04,05,06,11,12,14,15,16,18, 00,22,24,25,26,27,28,32,35,36, 38,39,40,45,47,50,51,52,53	unly.
Open Elective-IV	0169, 11 to 20, 21, 24, to 41, 43 to 48, 50 to 53.	A

, r L

-2.2!

H.O.D. Mech. Dept

DR.BABASAHEBAMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE -RAIGAD- 402 103

M.S. BIDVE ENGG.COLLEGE, LATUR

DEPT.OF MECHANICAL ENGIN EERING Special program for slow and fast learners Academic Year (2023-2024) Odd Semester רעט ל - <u>ב</u>

<u>Notice</u>

All the students of T.Y. Mechanical Engg. are informed that slow and fast learners groups are created on basis of marks obtained in Mid-semester Examination of various subjects. Following is the of Roll numbers of slow learners(less than 40% marks). Kindly contact to subject Teachers for more details.

Subject	Slow learners roll numbers	Faculty Signature
Theory of Machines- II	01,02,03,05,07,08,09,6,11,12,13, 14,15,16,17,18,19,20,21,02,23,21,25,28 30, 33, 35, 36, 37,39, 40, 41, 44,43,44,45	Augor
Heat Transfer	01, 02, 03 05, 07, 08, 11 (2, 13) 14, 15, 16, 17, 19, 22, 24, 25, 28, 25, 26, 37, 12, 63	H
Machine Design – I	03,05,07,09,11,12,16,18, 21,25,28,33,35,37,39,42,43,	Mag .
Elective-II Automobile / Engineering	14,15,16,17,18,20,21,24,25,28,32, 34,35,36,37,39,40,41,42,43	every
	02, 03, 05, 11, 12, 14, 16, 18, 24 3, 24, 15, 28, 32, 34, 35, 37, 40	À
Dpen Elective- I (Solar Energy)	01,02,03,04,05,06,07,01,10,13,14,13, 6,4,18,19,20,22,23,24,23,32,35,34,33, 42, 19,28,30,33,34,43,	\$up

H.O.D. Mech. Dept

6

DR.BABASAHEBAMBEDKAR TECHNOLOGICAL UNI VERSITY, LONERE -RAIGAD-402 103

M.S. BIDVE ENGG.COLLEGE,LATUR

DEPT.OF MECHANICAL ENGINEERING Special program for slow and fast learners Academic Year (2023-2024) Odd Semester Part-J

Notice

All the students of S.Y. Mechanical Engg. are informed that slow and fast learners groups are created on basis of marks obtained in Mid-semester Examination of various subjects. Following is the of Roll numbers of slow learners(less than 40% marks). Kindly contact to subject Teachers for more details.

Subject	Slow learners roll numbers	Faculty Signature
Materials Science and Metallurgy	01,03,13,14,15,20,25,26,29,30	P
Thermodynamics	(*, *, 3, 5, 6, 7, 8, 9, 12, 15 15, 16, 19, 20, 24, 28, 28, 28,	m-2
Fluid Mechanics	01,02,03,05,06,07,108,09,10,12,13,191 B, 16(18,18,10,20,23,24,25,26,27,18,29,250	fing
Engineering Mathematics – III	01,02,03,04,05,07,07,08,11,12,13, -14,15,17,18,20,21,22,23,24,25, 26,28.	<u> </u>

S

H.O.D. Mech. Dept

DR.BABASAHEB AMBEDKAR TECHNOLOGICAL UNI VERSITY, LONERE -RAIGAD- 402 103

M.S. BIDVE ENGG.COLLEGE, LATUR

DEPT.OF MECHANICAL ENGINEERING Special program for slow and fast learners Academic Year (2023-2024) Even Semester Parts 4 ~ II

<u>Notice</u>

All the students of S.Y. Mechanical Engg. are informed that slow and fast learners groups are created on basis of marks obtained in Mid-semester Examination of various subjects. Following is the of Roll numbers of slow learners(less than 40% marks). Kindly contact to subject Teachers for more details.

Subject	Slow learners roll numbers	Faculty Signature
Manufacturing Processes – I	1,2,4,6,7,8,9,10,13,14,16,17,18 19,24, 14,27, 28, 29,30,31	March Iman
Theory of Machines-I	1,2,4,6,7,8,9,44,16 18,19,24,25,26,27,29,30,3]	
Basic Human Rights/	1,2, H, 6, 7, 8, 9, 43, 16, 18, 20, 26, 27, 29, 30, 31	
Strength of Materials	2, 4, 5, 8, 7, 16, 19,20 26, 27, 29, 30, 31	ME
Elective-I Fluid Machinery	1,2, 4, 6, 7, 8, 9,13, 16	fuy?

H.O.D. Mech. Dept

n

DR.BABASAHEB AMBEDKAR TECHNOLOGICAL UNI VERSITY, LONERE -RAIGAD- 402 103

M.S. BIDVE ENGG. COLLEGE, LATUR

DEPT.OF MECHANICAL ENGINEERING Special program for slow and fast learners Academic Year (2023-2024) Even Semester

<u>Notice</u>

All the students of T.Y. Mechanical Engg. are informed that slow and fast learners groups are created on basis of marks obtained in Mid-semester Examination of various subjects. Following is the of Roll numbers of slow learners(less than 40% marks). Kindly contact to subject Teachers for more details.

Subject	Slow learners roll numbers	Faculty Signature
Manufacturing Processes- II	13, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16 18, 20, 22, 25, 26, 82, 35, 38, 42	
Machine Design-II	13, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16 18, 20, 22, 25, 26, 52, 35, 38, 42 50, 51, 3, 5, 9, 11, 12, 14, 16, 18, 20, 12 24, 26, 35, 36, 30, 39, 42, 13, 44, 49 50, 51,	hal.
Elective-III	01,3,4,5,6,11, 12,14, 15, 16, 17,18	at
IC Engines	50, 51, 01, 3, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18 19, 20, 21, 22, 24, 24, 25, 26, 24, 28, 29 31, 32, 33, 34, 35, 36, 38, 39, 40 42, 4 thuis, 46, 47, 49, 505, 52 1, 11, 12, 14, 16, 18, 20, 25, 24	
Elective-IV	111, 10, 11, 49, 5051,52-	Dague
Robotics	35, 36, 38, 43, 44, 46,	Smp
Elective-IV Quantitative Techniques and Project Management		

H.O.D. Mech. Dept

Date:-

0

Mahatma Basweshwar Education Society's M.S. BIDVE ENGINEERING COLLEGE, (Approved by AICTE,New Delhi & DTE mumbai,Affiliated to S.R.T.M.U,Nanded) P.O.Box No.112,Brashi Road,LATUR-413531(Maharashtra) Department – MCA DTE Code:-MC2129

MCA 2023-24 Mentor List of MCA

SR.NO	Class	Mentor	Roll No	Signature
1	MCAFY	Prof.Rasure B.B	1 To 20	aus
2	MCAFY	Prof.Vyavhare N.R	21 To 32	1000
3.	MCAFY	Prof.Dhappadhule M.S.	33 to 64	1:1184
3	MCASY	Prof.Birajdar P.S.	1 To 22	Reiter
5	MCASY	Prof.Deshmukh S.D	23 to 44	all

HOD

Prof.D.C.cmah P. Holhalli Principal M.S. Did to Corp. C. College LACOMED 1772

Mahatma Basweshwar Education Society's M.S. BIDVE ENGINEERING COLLEGE, (Approved by AICTE, New Deihi & DTE mumbai, Affiliated to S.R.T.M.U.Nanded) P.O.Box No.112, Brashi Road, LATUR-413531(Maharashtra) Department - Computer Application DTE Code: - 2129

SR.NO	Class	Mentor	Roll No	Signature
1	MCAFY	Prof.Rasure B.B	1 To 20	Signature
2	MCAFY	Prof.Deshmukh S.D	21 To 32	Carly .
3	MCASY	Prof.Birajdar P.S.	1 To 20	Reit
4	MCASY	Prof.Dhappadhule M.S.	21 To 40	1itial
5	MCASY	Prof.Vyavhare N.R	41 to 57	Nau

HOD

Bane NC. PRINCIPAL institute of PRINCIPALEducation Latur

Mahatma Basweshwar Education Society's M.S. BIDVE ENGINEERING COLLEGE, (Approved by AICTE, New Delhi & DTE mumbel, Affiliated to S.R.T.M.U., Nanded) P.O.Box No.112, Brashi Road, LATUR-413531(Maharashtra) Department - Computer Application DTE Code:- 2129

TINITIC IN

MCA First Year 2023-24 [SEM I]

		cst I Ke	cord of 5 S	ubjects			Ma	arks:25			
		Subjects									
Roll No	Name	PLC	Slow		Slow		Slow		Slow		Slow
1	AADE VISHAL BHAGWAN		learners	DS	learners	COA	learners	IMF	learners	MFCS	learners
2	ADSUL DHANASHREE PRABHAKAR	10		17		8	SL	13		4	SL
3	ADSULE RUTICK NANDKUMAR	2	SL	7	56	11		4	SL.	2	SL
4	BIRADAR SHUBHANGI BALAJI	2		20		18		16		12	
5	CHAVAN MADHURA SUDHIRRAO		SL	17		13		11		13	
6	CHOUNDE GOURAVI RAMAKANT	4	SL	3		12		12		3	SL
7	DANDGULE SHIVAJI GAVIND	10		. 9	01.	12		1.4		11	
8	DESHMUKH VAISHNVI SUNIL	15		16		10		12		7	
9	FAVADE VISHAL VITTHAL	15		15		18		10)	14	
	FUTANE AMOL KAMLAKAR	16		17		13		11		13	
	FUTANE VIJAY SUDHAKAR	16		16		10		12		7	SL
	GADE VAISHALI YUVRAJ	15		16		10		12		7	SL
	GAHIRWAR KIRTI KIRANSINHA	15		15		18		10		14	
	SAHIRWAR KISANSING VIJAYSING	10		5	SL	10		4	SL	3	SL
	GORE PRANJALI PRAVIN			17		13		11		13	01
	GUMME RUTUJA CHANDRAKANT	18		5	SL	16		7	SL	6	SL
	GUTTE SUJATHA SHAMRAO	13		7	SL	11		4	SL	2	SL
	AJARE SHRIKRUSHNA GAVIND	10		20		18		16	i	12	JL
		10		17		13		11		13	
	ANCHATE PRAJWAL PANDURANG	18		17		13		11		13	
	ADHAV DATTAPRASAD VASANT	10		12		25				9	CI
21]3	ADHAV PAYAL VISHNUDAS	13		17		13		11		13	SL

						(
22 JADHAV PRATHVIRAJ BALAJI	16		c	CI	7	SL	4	SL.	0	SL
25 JADHAV SHREYA SATISH	10		6	SL	15	51	7	SL	11	01
24 JAGTAP JIVAN SHIVAII	18		17	SL	13		11		13	
25 KADAM ADITYA SUBVAKANT	13		17		8	SL	13		4	SL
20 KADAM PRANAV BALAU	13		7	SL		SL	4	SL	2	SL
27 KADAM VISHWAIIT ABHIMANIYU	25		20	SL	11		16	51	12	
20 KAMBLE ARATI SATYAVAN	13		17		18 13		10		13	
29 KAMBLE BALAJI MARUTI	7	SL	3	SL					3	SL
30 KAMBLE DNYANWSHWAR PRABHAKAR	15		9	SL	12		12		11	JL
ST RAMBLE SHRADHA MACHINDRA	13		14	JL JL	12		14			SL
32 KANDANGIRE VAIBHAV PRADIP	5	SL	14		20		13		4	SL
33 KATAKE SHRUTI NAGSEN	5	SL	19		7	SL	10		10	
34 KORE ANURADHA BHAGAVAN	13	01	14		17		10		7	SL
35 KSHIRSAGAR SURAJ BALAJI	5	SL	13		20		13		4	SL
36 LOKHANDE ABHILASH BHAGWAN	9	SL	16			SL	10		10	
37 MANE KRISHNA SHIVMURTI	9	SL	16		10		12		4	SL
38 MANE SWAPNIL VAIJANATH	12		19		10		12		4	SL
39 MATHAPATI SHREYA SOMESHWAR	18		16		13		16		13	
40 MUDKANNA VAISHNAVI JITENDRA	10		12		10		12		13	
41 PANDHARE SUHAS VISHWANATH	13		8	SL	13		18		11	
42 PATHAN MOHSIN KHALIL	16		9	SL	8	SL.	10		18	
43 PATIL GANESH RAJKUMAR	11		13	51	13		13	AA		
44 PATIL VAISHNAVI VISHWANATH	18		9	SL	11		16		13	
45 PATIL VAISHNAVI VIRESH	13		6	SL	18		11	AA		
46 PAWAR SHEKHAR BABRUWAN	13		14	3L	13		18		18	
47 RANKHAMB BAJRANH LAXMAN	5	SL	14		20		13		4	SL
48 SATBHAI CHANDRAKANT RAJIV	9	SL	15		7	SL	10		10	
49 SAVANT RUTUJA UMESH	e e e	SL	16		10		12		4	SL
50 SAVRIKAR PUSHKARAJ UDDHAVRAO	12	JL			10		12		4	SL.
51 SHAIKH AMAN MALIK	18		19		13		16		13	
52 SHARAMA SHMBHU SURESHJI	10		16		10		12		13	
53 SHEGEDAR VISHAL BHAUSAHEB	10		12		13		18		11	
54 SHENDAGE MAHESH BAPU			8	SL	8		10		18	
THE SHOE MAILSH DAFU	16		9	SL	13		13	AA	the second s	

Mahatma Basweshwar Education Society's M.S. BIDVE ENGINEERING COLLEGE, (Approved by AICTE, New Delhi & DTE mumbal, Affiliated to S.R.T.M.U, Nanded) P.O.Box No.112, Brashi Road, LATUR-413531 (Maharashtra) Department - Computer Application DTE Code:- 2129

MCA First Year 2023-24 [SEM I]

UNIT Test	I Record of	5 Sub	jects

TID TRONT OF

	UNIT	est I Re	ecord of 5 S	Subjects	5		Ma	arks:25			
			CL		1		Subjects				
Roll N	0 Name	PLC	Slow learners	DS	Slow		Slow		Slow		Slow
	1 AADE VISHAL BHAGWAN	10	rearners		learners	COA	learners	IMF	learners	MFCS	learners
	ADSUL DHANASHREE PRABHAKAR	2	SL	17		8	SL	13		4	SL
3	ADSULE RUTICK NANDKUMAR	10	JL.	20	SL	11		4	SL	2	SL
4	BIRADAR SHUBHANGI BALAJI	2	SL	17		18		16		12	
5	CHAVAN MADHURA SUDHIRRAO	4	SL	3	SL	13		11		13	
6	CHOUNDE GOURAVI RAMAKANT	10		. 9	SL SL	12		12		3	SL
	DANDGULE SHIVAJI GAVIND	16		16	3L	12		14		11	
	DESHMUKH VAISHNVI SUNIL	15		15		10		12		7	
	FAVADE VISHAL VITTHAL	17		17		18		10		14	
	FUTANE AMOL KAMLAKAR	16		16		13		11		13	
	UTANE VIJAY SUDHAKAR	16		16		10		12		7	SL
	GADE VAISHALI YUVRAJ	15		15		10		12		7	SL
	SAHIRWAR KIRTI KIRANSINHA	15		5	SL	18		10		14	
14 0	SAHIRWAR KISANSING VIJAYSING	10		17	36	10		4	SL	3	SL
15 G	ORE PRANJALI PRAVIN	18		5	SL	13		11		13	
16 G	UMME RUTUJA CHANDRAKANT	13		7	SL SL	16		7	SL	6	SL
17 G	UTTE SUJATHA SHAMRAO	10		20	SL	11		4	SL	2	SL
18 H	AJARE SHRIKRUSHNA GAVIND	10		17		18		16		12	
	ANCHATE PRAJWAL PANDURANG	18		17		13		11		13	
20 JA	DHAV DATTAPRASAD VASANT	10		12		13		11		13	
.1 JA	DHAV PAYAL VISHNUDAS	13				25		7	SL.	9	SL
		10		17		13		11		13	01

2	2 JADHAV PRATHVIRAJ BALAJI	16		6	SL	7	SL	4	SL	0	61
2	3 JADHAV SHREYA SATISH	11		9	SL	15	51	7	SL	11	SL
2	4 JAGTAP JIVAN SHIVAJI	18		17		13		11	JL	13	
2	5 KADAM ADITYA SURYAKANT	13		17		8	SL	13		4	SL
	6 KADAM PRANAV BALAJI	13		7	SL	11		4	SL	2	SL
	7 KADAM VISHWAJIT ABHIMANYU	25		20		18		16	52	12	
	8 KAMBLE ARATI SATYAVAN	13		17		13		11		13	
	AMBLE BALAJI MARUTI	7	SL	3	SL	12		12		3	SL
	KAMBLE DNYANWSHWAR PRABHAKAR	15		9	SL	12		14		11	
	KAMBLE SHRADHA MACHINDRA	13		14		20		13		4	SL
	KANDANGIRE VAIBHAV PRADIP	5	SL	13		7	SL	10		10	
	KATAKE SHRUTI NAGSEN	5	SL	19		17		10		7	SL
	KORE ANURADHA BHAGAVAN	13		14		20		13		4	SL
	KSHIRSAGAR SURAJ BALAJI	5	SL	13		7	SL	10		10	
	LOKHANDE ABHILASH BHAGWAN	9	SL	16		10		12		4	SL
	MANE KRISHNA SHIVMURTI	9	SL	16		10		12		4	SL
	MANE SWAPNIL VAIJANATH	12		19		13		16		13	JL
	MATHAPATI SHREYA SOMESHWAR	18		16		10		12		13	
	MUDKANNA VAISHNAVI JITENDRA	10		12		13		18		11	
41	PANDHARE SUHAS VISHWANATH	13		8	SL	8	SL	10		11	
42	PATHAN MOHSIN KHALIL	16		9	SL	13		13		AA	<u> </u>
43	PATIL GANESH RAJKUMAR	11		13		11		16		13	.+
44	PATIL VAISHNAVI VISHWANATH	18		9	SL	18		11		AA	4
45	PATIL VAISHNAVI VIRESH	13		6	SL	13		11		1	
46	PAWAR SHEKHAR BABRUWAN	13		14		20		13			
47	RANKHAMB BAJRANH LAXMAN	5	SL	13		7		10			4 S
	SATBHAI CHANDRAKANT RAJIV	9	SL	16		10				1	
	SAVANT RUTUJA UMESH	ġ	SL	16		10		12			4 5
50	SAVRIKAR PUSHKARAJ UDDHAVRAO	12		19		13		1			4 9
	SHAIKH AMAN MALIK	18		16		10			-		13
52	SHARAMA SHMBHU SURESHJI	10		12		13		1	8		13
	SHEGEDAR VISHAL BHAUSAHEB	13		8			B SL		.0		11
54	SHENDAGE MAHESH BAPU	16		9		1			.0		18
		1 20]					1 3	1.5	AA	

	SHETGAR MAHESH MADHUKAR	11	N	13		11		16	13	
	SHINDE JYOTIRAM DATTA	18		9	SL	18		11	AA	
	SHINDE RAMPRASAD BALANAND	13		6	SL	13		18	18	
-	SHINDE TANAYA CHANDRAKANT	13		8	SL	8	SL.	10	18	
	THOMBARE SHWETALI SAMBHAJI	16		9	SL	13		13	AA	
	TINGRE AKASH MANIK	11		13		11		16	13	·
61	UPADE AKASHKUMAR KAMLAKAR	18		9	SL	18		11	AA	
62	WADWALKAR VAISHNAVI DHANANJAY	13		6	SL	13		18	18	
63	WAGH AMRUTA LAXMIKANT	18		9	SL	18		11	AA	
	WALAMPALLE AVISHKAR GOVIND	13		6	SL	13		18	18	8

1. Prof. Dhappadhule .M.S. 2. Prof. Dr. Deshmukh S. D. Cuk 3. Prof. Rasure B. B.

4. Prof. Birajdar P. S.

5. Prof Halgare N. M

Exam incharge

HOD

Principal

Mahatma Basweshwar Education Society's M.S. BIDVE ENGINEERING COLLEGE, (Approved by AICTE, New Delhi & DTE mumbal, Affiliated to S.R.T.M.U, Nanded) P.O.Box No.112, Brashi Road, LATUR-413531 (Maharashtra) Department - Computer Application DTE Code:- 2129

SR.NO	Class	Mentor	Roll No	Signature
1	MCAFY	Prof.Rasure B.B	1 To 20	Comp
2	MCAFY	Prof.Deshmukh S.D	21 To 32	
2	MCASY	Prof.Birajdar P.S.	1 To 20	(teiti
3	MCASY	Prof.Dhappadhule M.S.	21 To 40	11184
4		Prof.Vyavhare N.R	41 to 57	Nous
5	MCASY	Pronvyavnare N.N		2

7002 HOD

IC. PRINCIPAL Institute of PRINCIPALEducation Latur

•

<u>UNIT –I</u> Essay Answer (10 mark) Questions

1. (a) Convert the given decimal number 234 to binary, octal, hexadecimal and BCD equivalent. [6M][L1][CO1] (b) Given that $(16)_{10} = (100)_b$, determine the value of b. [2M][L1][CO1] (c) Given that $(292)_{10} = (1204)_b$, determine the value of b. [2M][L1][CO1] 2. (a) Convert the following. [5M][L1][C01] ii) $(2314)_8 = ()_{10}$ iii) $(1000011)_2 = ()_{10}$ iv) $(647)_{10} = ()_{16}$ i) $(BC)_{16} = ()_{10}$ (b) Express the following numbers in decimal. [3M][L1][C01] i) (10110.0101)₂ ii) (16.5)₁₆ iii) (26.24)₈ (c) Convert decimal 27.315 to binary. [2M][L1][CO1] 3. Perform the following (a) Subtraction using 9's complement for the given. [5M][L1][CO1] i) 54321 - 41245 ii) 1231-4145 (b) Subtraction by using 1's complement for the given. [5M][L1][CO1] i) 111011-110110 ii) 10001-10011 4. Perform the following (a) Subtraction using 10's complement for the given. [5M][L1][CO1] i) 3456 – 245 ii) 1631-745 (b) Subtraction by using 2's complement for the given. [5M][L1][CO1] i) 111001-1010 ii) 10011-10001 5. (a) Perform the following using BCD arithmetic. [5M][L1][CO1] i) $(79)_{10} + (177)_{10}$ ii) $(481)_{10} + (178)_{10}$ (b) Convert the following to binary and then to gray code. [5M][L1][CO1] i) (1111)₁₆ ii) (BC54)₁₆ iii) (237)₈ iv) (164)₁₀ v) (323)₈ 6. (a) Explain about the Binary Codes. [5M][L1][CO1] (b) Simplify the following Boolean functions to minimum number of literals. [5M][L1][CO1] i) F=xy+x'z+yz. ii) F=x'y'z+x'yz+xy' iii) F=(x+y)'(x'+y')iv) F=xy+xy'+x'yv) F = (BC'+A'D)(AB'+CD')7. (a) State and prove De Morgan's theorem. [4M][L1][C01] (b) State and prove Duality theorem. [4M][L1][CO1] (c) State the distributive law. [2M][L1][CO1] 8. (a) Obtain the Dual and complement to the following Boolean expressions. [8M][L1][CO1] i) F=AB+A(B+C) + B'(B+D)ii) F=A+B+A'B'C iii)F=A'B+A'BC'+A'BCD+A'BC'D'E

Digital System Design

iv) F= ABEF+ABE'F'+A'B'EF[2M][L1][CO1](b) Give the truth table of XNOR logic gates.[2M][L1][CO1]9. (i) Express the Boolean function F= A+B'C as a sum of minterms.[5M][L1][CO1](ii) Express the Boolean function F= XY+X'Z as a product of maxterm.[5M][L1][CO1]10. (a) Express the following function as a sum of minterms and as a product of maxtermsF(A,B,C,D) = B'D+A'D+BD.[5M][L1][CO1](b) Obtain the truth table of the following Boolean function and express the function as sum ofF(A,B,C,D) = B'D+A'D+BD.F(A,B,C,D) = B'D+A'D+BD.

minterms and product of maxterms F = (A+B) (B+C). [5M][L1][CO1]

Digital System Design

<u>UNIT –II</u> Essay (10 mark) Questions

1. a) Minimize the following Boolean function using K-map	
$F(A, B, C, D) = \Sigma m(1,4,5,6,12,13,14,15).$	[2M][L1][CO3]
b) Obtain the simplified expression using K-map for the following Boolean fu	nction
$F(A, B, C, D, E) = \sum (0,1,4,5,16,17,21,25,29).$	[3M][L1][CO3]
c) Simplify $F(A,B,C,D) = \sum (4,5,6,7,12,13,14) + d(1,9,11,15)$ using K-map.	[5M][L1][CO3]
2. Simplify the following Boolean function for minimal SOP & POS form using	g K-map
i) $F(A, B, C, D) = \Sigma (0, 1, 2, 5, 8, 9, 10)$	
ii) F (A, B, C, D) = $\pi(1,3,5,7,12,13,14,15)$.	[10M][L2][CO3]
3. Obtain (i) Sum of products form and (ii) Product of sums form for	
$F=x^{2}y^{2}+y^{2}+yz^{2}+xy$	[10M][L2][CO3]
4. Minimize the given Boolean function, F (A, B,C,D) = Σ m(0,1,2,3,6,7,13,15)	using Tabulation
method and implement it using basic gates.	[10M][L2][CO3]
5. (a)Write the design procedure for combinational circuit.	[5M][L3][CO4]
(b) Design & implement the Full Adder .	[5M][L3][CO4]
6. (a) Design & implement 4-bit Adder/subtractor.	[4M][L3][CO4]
(b) Explain about carry look ahead adder with suitable diagram.	[6M]L1][CO4]
7. (a) Construct a BCD adder circuit.	[3M][L3][CO4]
(b)With a neat design procedure, explain the implementation of a 4-bit Magn	itude Comparator.
	[7M][L3][CO4]
8. (a) Define Decoder. Design & implement a 3 to 8 line Decoder.	[5M][L3][CO4]
(b) Design & implement a Full Adder using Decoder and two OR gates.	[5M][L3][CO4]
9. (a) What is Encoder? Design an octal to binary Encoder.	[5M][L3][CO4]
(b) Design & Implement an 8:1 Multiplexer.	[5M][L3][CO4]
10. (a) Implement the following Boolean function using 4:1 Multiplexer.	
$F(A, B, C) = \sum (1, 2, 6, 7).$	[5M][L3][CO4]
(b) Design a 1:4 Demultiplexer and mention the applications of a DEMUX.	[5M][L1][CO4]

<u>UNIT –III</u> Essay (10 mark) Questions

1.	(a) Draw the logic diagram of a JK – flip flop and explain its operation.(b) What is the need for Master Slave JK FF and explain its operation with near	[5M][L4][CO3] t diagrams.
2.	(a)Explain the operation of an SR Flip Flop using excitation table. Give its Tru	[5M][L2][CO3] th Table and
	Characteristic Equation	[5M][L2][CO3]
	(b)Give the characteristic table, Truth table, characteristic equation and excitati	on table for T and
	DFF.	[5M][L2][CO3]
3.	(a)Implement D-FF using JK FF with its truth table.	[5M][L4][CO3]
	(b) Draw the basic flip flop circuit with NOR gates. Explain its operation	[5M][L2][CO3]
4.	(a)Compare Synchronous and Ripple counters.	[3M][L2][CO2]
	(b) Design and implement Mod-10 Synchronous Up counter using T-FFs	[7M][L4][CO3]
5.	(a)Design MOD -6 Ripple Down counter	[5M][L4][CO3
	(b)Draw and explain a 4-bit Serial in Serial out (SISO) Shift Register.	[5M][L4][CO3]
6.	Draw and explain 4-bit Universal shift register.	[10M][L6][CO3]
7.	(a)Explain the difference between Ring and Johnson counters with neat sketch	. [5M][L4][CO3]
	(b) Design a 4-bit synchronous up counter using JK flip flops.	[5M][L2][CO4]
8.	(a) Design a Positive edge triggered Master-Slave D flip flop	[4M][L2][CO3]
	(b) Design and implement a BCD Ripple counter using JK Flip Flops.	[6M][L3][CO3]
9.	(a)Design a 4-bit binary ripple down – counter using a negative edge triggered	Г – Flip Flops.
		[5M][L3][CO3]
	(b)Explain the operation of Pseudo Random Binary Sequence Generator with a	a neat diagram.
		[5M][L2][CO3]
10	. (a)Explain the principle of clock generation with neat diagram	[4M][L4][CO3]
	(b) Design and implement a 2 bit Up-Down Counter using JK FF's.	[6M][L4][CO3]

<u>UNIT –IV</u> Essay (10 mark) Questions

1.	(a)Perform the analysis of standard DTL NAND gate and give its chara	
		[5M][L4][CO3]
	(b) Give the classification of integrated circuits and compare the various	s logic families.
		[5M][L2][CO2]
2.	(a)What is meant by Tristate logic? Draw the circuit of Tristate TTL log	gic and explain the
	functions.	[6M][L4][CO4]
	(b) Explain the following specifications	[4M][L2][CO2]
	(i) Fan out	
	(ii)Noise margin	
3.	(a) Briefly Explain about ECL.	[5M][L2][CO2]
	(b) Compare between Different CMOS Logic families.	[5M][L1][CO2]
4.	(a)Explain about TTL to CMOS interfacing	[5M][L4][CO2]
	(b) Compare TTL, ECL and CMOS	[5M][L1][CO2]
5.	Design a BCD to excess 3 code converter using suitable PLA	[10M][L4][CO4]
6.	Implement the following functions using a PLA `	[10M][L4][CO3]
	(i)f1(w,x,y)= $\sum m(3,5,6,7)$ ii) f2(w,x,y)= $\sum m(0,2,4,7)$	
7.	Generate the following Boolean function using PAL with 4 inputs and	_
		[10M][L6][CO3]
	(i)Y3 = a'bc'd + a'bcd' + abc'd	
	(ii)Y2=a'bcd'+a'bcd+abcd	
	(iii)Y1=a'bc'+a'bc+ab'c+abc'	
	(iv)Y0=abcd8.	
8.	(a)Derive the PLA programming table for the combinational circuit that	-
	number.	[5M][L2][CO4]
_	(b) Compare three combinational circuits: PLA, PAL and ROM.	[5M][L1][CO4]
9.		[5M][L2][CO2]
10	(b) Briefly introduce the content addressable memory.	[5M][L1][CO2]
10	. Implement the following Boolean function using PAL.	[10M][L6][CO3]
	(i) F1 (w,x,y,z) = $\Sigma m(0,1,2,3,7,9,11)$	
	(ii) F2 (w,x,y,z) = Σ m(0,1,2,3,10,12,14) (iii) F2 (w,z,y,z) = Σ m(0,1,2,2,10,12,14)	
	(iii) F3 (w,x,y,z) = Σ m(0,1,2,3,10,13,15	
11	(iv) F4 (w,x,y,z) = $\Sigma m(4,5,6,7,9,15)$	
11	(a)Explain the 4X4 ROM construction with neat diagram.	[5M][L2][CO4]
	(b) Implement NOT, NAND and NOR operation using CMOS logic	[5M][L2][CO4]

<u>UNIT –V</u> Essay (10 mark) Questions

1) a) Explain various data objects in VHDL. Give necessary examples.

	[5M] [L2] [CO5]
(b) Explain the structure of a VHDL program.	[5M] [L2] [CO5]
2) Explain in detail different modeling styles of VHDL with suitable examples.	[10M] [L2] [CO5]
3) Draw and explain in detail the VHDL design flow.	[10M] [L2] [CO5]
4) a) Explain the importance of Schematic in VHDL.	[5M] [L1] [CO5]
b) Explain about Data Types in VHDL.	[5M] [L2] [CO5]
5) a) Write a VHDL program for a 4X1 MUX.	[5M] [L4] [CO5]
b) Discuss in detail about Data Flow design elements.	[5M] [L4] [CO5]
6) a) Design a logic circuit and write a VHDL program to add 3 bit numbers.	[5M] [L5] [CO5]
b) Explain about Simulation and Synthesis processes in VHDL.	[5M] [L2] [CO5]
7) Design the logic circuit and write a data-flow style VHDL program for the f	following function.
$F(A,B,C,D) = \sum (1,5,6,7,9,13) + d(4,15).$	[10M] [L5] [CO5]
8) a) Write about structural design elements with VHDL code.	[5M] [L1] [CO5]
b) Write a VHDL entity and Architecture for the following function. $F(x) = ($	(a + b) (c d).
Also draw the relevant logic diagram.	[5M] [L5] [CO5]

9) a) Write a VHDL program for a 2 bit Magnitude Comparator using Data Flow model.

[5M] [L5] [CO5] [5M] [L5] [CO5] [5M] [L5] [CO5] [5M] [L5] [CO5]

b) Write a VHDL program for a D and T FF.10) a) Write a VHDL program for Full adder.b) Write a VHDL program for 3 to 8 Decoder.

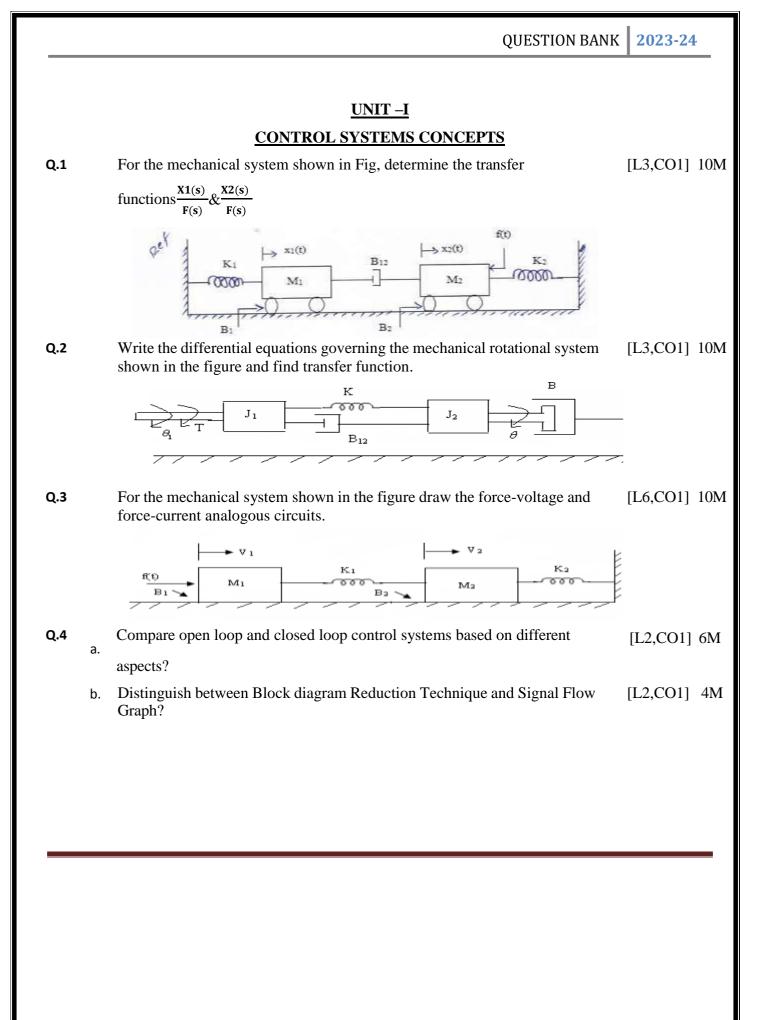
UNIT-I Short (2 mark) Questions

- 1. Converting the following to octal: $(4243)_{16}$. (ii) $(125)_{10}$.
- 2. Express the given number (M=01000100) using 1's complement?
- 3. What is the need for taking complement?
- 4. Perform X-Y using 1's complement of the given binary numbers X = 1010100 and Y = 1000011.
- 5. Find 10's complement of given decimal numbers X = 52324 and Y = 2421.
- 6. Why XS-3 code is called a self-complementing code?
- 7. What are the signed binary number systems?
- 8. What are the different classifications of binary codes?
- 9. State about error correcting codes?
- 10. What is meant by parity bit?
- 11. Define Demorgan's theorem.
- 12. Write the truth table for F=(A+B)(C+D)
- 13. State the associative law and commutative law.
- 14. State De Morgan's theorem and Duality.
- 15. Simplify the following expression Y = (A + B)(A' + C)(B' + C')
- 16. Show that (X + Y' + XY)(X + Y')(X'Y) = 0
- 17. Prove that ABC + ABC' + AB'C + A'BC = AB + AC + BC
- 18. Define Canonical SOP & Canonical POS.
- 19. Define binary logic?
- 20. Define logic gates?

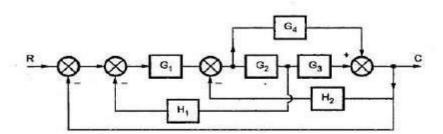
UNIT-II Short (2 mark) Questions

- 1. Simplify the given Boolean function, $F(X,Y,Z) = \sum (1,2,3,6,7)$.
- 2. Define Minterm and Maxterm.
- 3. Find the minterms of the given Boolean expressions
 - $F=C^{1}D+ABC^{1}+ABD^{1}+A^{1}B^{1}D.$
- 4. Define Prime Implicant and Essential Prime Implicant.
- **5.** Draw a 5 variable k-map.
- 6. Give the steps involved in analysis procedure for a combinational circuit.
- 7. Draw a Half Adder circuit and mention its truth table.
- 8. Draw a Half Subtractor circuit and mention its truth table.
- 9. Implement a Full Adder using Half Adders.
- 10. Mention the expressions for difference and borrow of Full Subtractor.
- 11. Draw the diagram of a 4 bit Binary Adder.
- **12.** Draw the circuit of two bit by two bit binary multiplier.
- **13.** Draw the 4*16 Decoder circuit using two 3x8 Decoders.
- 14. Define encoder and decoder.
- 15. Write the truth table of priority encoder.
- **16.** List the applications of Encoder and Decoder.
- 17. Design a 2:1 Multiplexer.
- **18.** Define Mux and Demux.
- 19. List the applications of MUX and DEMUX.
- 20. Define Carry Look Ahead Adder.

UNIT-III Short (2 mark) Questions

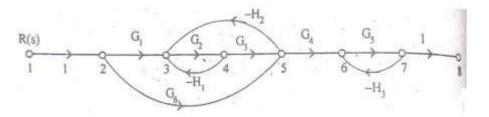

- 1. Write the difference between Latch and Flip flop
- 2. Briefly explain about D-FF
- 3. Draw the block diagram of sequential circuit using combinational circuit and memory unit
- 4. Draw the logic circuit of flip-flop and truth table using NAND gates
- 5. Give the comparison between combinational circuits and sequential circuits
- 6. What is shift register? Give the classification of them?
- 7. Draw the circuit of ring counter.
- 8. What is the operation of SR flip-flop?
- 9. What are the different types of flip-flop?
- 10. Define Flip flop. What are the applications of FF
- 11. What is the operation of JK flip-flop?
- 12. Draw the PIPO shift register
- 13. What is edge-triggered flip-flop?
- 14. What are different types of counter
- 15. Explain the flip-flop excitation tables for JK flip-flop
- 16. Draw the MOD-2 Counter.
- 17. Draw the SIPO shift register
- 18. Give the comparison between synchronous & Asynchronous counters.
- 19. What is a master-slave flip-flop?
- 20. What are the classifications of sequential circuits?

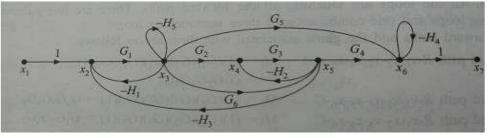
UNIT-IV Short (2 mark) Questions

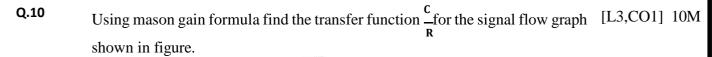

- 1. Define Propagation delay and Fan-out.
- 2. Draw the symbol of NMOS and PMOS transistor.
- 3. Define noise margin.
- 4. Draw CMOS AND gate.
- 5. What are the advantages of flash memory?
- 6. Draw the DTL OR gate.
- 7. What is the concept of ROM?
- 8. What are the advantages of PLDs.
- 9. List different PLDs.
- 10. Draw CMOS OR gate.
- 11. Draw the structure of PAL.
- 12. What is meant by Tristate TTL
- 13. Compare PAL, PLA & PROM.
- 14. Realize $F(x,y,z) = \Sigma m(1,2,5,7)$ using PLA.
- 15. Realize $F(x,y,z) = \Sigma m(1,2,3,6)$ using PAL
- 16. How does the PLDs differ from fixed logic devices?
- 17. Find the number of address lines to access 4KB ROM.
- 18. What is static memory?
- 19. List the differences between static & dynamic memories.

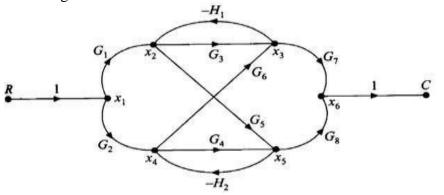
UNIT-V Short (2 mark) Questions


- 1. List the different objects of VHDL.
- 2. Define FSM.
- 3. What is the need of HDL?
- 4. Give the difference between Signal and Variable.
- 5. Give any two differences between different modeling styles of VHDL.
- 6. Define Data flow model.
- 7. Define Structural model.
- 8. Define Behavioral model.
- 9. State the basic statement used in behavioral Modeling.
- 10. Define Process and Sequential Statements with example.
- 11. Write an entity declaration for 1x8 De-Mux.
- 12. Write a VHDL Program for 1x4 DEMUX in Dataflow Model.
- 13. Write a VHDL Program for Half adder in Structural Model.
- 14. Write a VHDL Program for Full adder in Behavioral Model.
- 15. Write a VHDL Program for 1x8 De-MUX in Structural Model.
- 16. Write a VHDL Program for Half Subtractor in Dataflow Model.
- 17. Write a VHDL Program for Full Subtractor in Structural Model.
- 18. Write a VHDL Program for 2x4 Decoder in Dataflow Model.
- 19. Write a VHDL Program for 4x2 Encoder in Structural Model.
- 20. Write an Entity Declaration for 4x8 Decoder in Structural Model.


Q.5 Using Block diagram reduction technique find the Transfer Function of the [L5,CO1] 10M system.


- Q.6 a. Give the block diagram reduction rules to find the transfer function of the system.
 b. List the properties of signal flow graph.
 [L1,C01] 4M
- Q.7 For the system represented in the given figure, determine transfer function [L3,CO1] 10M C(S)/R(S).


Q.8 Find the overall transfer function of the system whose signal flow graph is [L5, shown below.



Q.9 Obtain the transfer function of the system whose signal flow graph is shown [L3,CO1] 10M below.

[L5,CO1] 10M

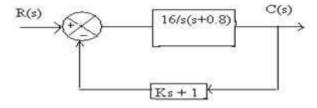
Q.11 i) Define control systems?

[L1,CO1] 2M

ii)	What is feedback? What type of feedback is employed in control systems?	[L2,CO1]	2M
iii)	Define transfer function?	[L1,CO1]	2M
iv)	What is block diagram? What are the basic components of block diagram?	[L2,CO1]	2M
v)	Explain transmittance	[L4,CO1]	2M

<u>UNIT-II</u> <u>TIME RESPONSE ANALYSIS</u>

Q.1	List out the time domain specifications and derive the expressions for Rise time, Peak time and Peak overshoot.	[L1,CO2]	10M
Q.2	Find all the time domain specifications for a unity feedback control system	[L2,CO2]	10M
	whose open loop transfer function is given by $G(S) = \frac{25}{S(S+5)}$.		
Q.3	A closed loop servo is represented by the differential equation: $\frac{d^2c}{dt^2} + \frac{8dc}{dt} =$	[L3,CO2]	10M
	64e. Where 'c' is the displacement of the output shaft, 'r' is the displacement		
	of the input shaft and $e = r - c$. Determine undamped natural frequency,		
	damping ratio and percentage maximum overshoot for unit step input.		


- Q.4 a. Measurements conducted on a servo mechanism, show the system response to [L3,CO2] 5M be c(t) = 1+0.2e^{-60t}- 1.2e^{-10t} When subject to a unit step input.Obtain an expression for closed loop transfer function, determine the undamped natural frequency, damping ratio?
 - b. For servo mechanisms with open loop transfer function given below what type [L3,CO2] 5M of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{10}{S^2(S+1)(S+2)}$$

Q.5 A unity feedback control system has an open loop transfer function, G(s) = [L5,CO2] 10M $\frac{10}{s(s+2)}$. Find the rise time, percentage overshoot, peak time and settling time

for a step input of 12 units.

- Q.6 Define steady state error? Derive the static error components for Type 0, Type [L1,CO2] 10M 1 &Type 2 systems?
- **Q.7** A positional control system with velocity feedback shown in figure. What is [L3,CO2] 10M the response c(t) to the unit step input. Given that damping ratio=0.5.Also determine rise time, peak time, maximum overshoot and settling time.

Q.8 a. A For servo mechanisms with open loop transfer function given below what [L3,CO2] 5M type of input signal give rise to a constant steady state error and calculate their values.

$$G(s)H(s) = \frac{20(S+2)}{S(S+1)(S+3)}$$

b. Consider a unity feedback system with a closed loop transfer function $\underline{c(s)}$ = [L3,CO2] 5M

 $\frac{KS+b}{(S^2+aS+b)}$. Calculate open loop transfer function G(s). Show that steady state

error with unit ramp

input is given by $(\underline{a-K})$

Q.9

For a unity feedback control system the open loop transfer function [L3,CO2] 10M

$$G(S) = \frac{10(S+2)}{S^2(S+1)}.$$

(i) Determine the position, velocity and acceleration error constants.

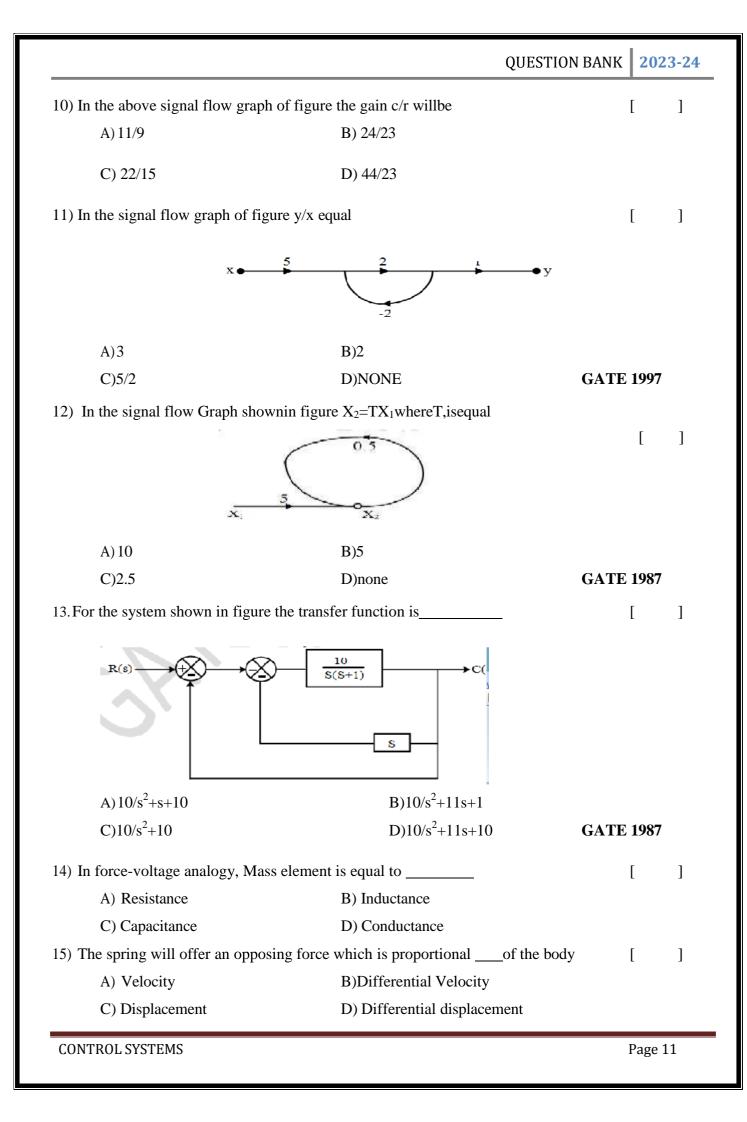
(ii) The steady state error when the input is $\mathbf{R}(\mathbf{S}) = \frac{3}{S} - \frac{2}{S^2} + \frac{1}{3S^3}$.

Q.10	a.	What is the characteristic equation? List the significance of characteristic equation.		2M
	b.	The system has $G(s) = \frac{K}{S(1+ST)}$ with unity feedback where K & T are constant.	. [L3,CO2]	8M
		Determine the factor by which gain 'K' should be multiplied to reduce the overshot from 75% to 25%?		
Q.11	i)	How the system is classified depending on the value of damping ratio?	[L4,CO2]	2M
	ii)	List the time domain specifications?	[L1,CO2]	2M
	iii)	Define peak overshoot?	[L1,CO2]	2M
	iv)	Define accelerating error constant?	[L1,CO2]	2M
	v)	What is the need for a controller?	[L2,CO2]	2M
		<u>UNIT –III</u>		
		STABILITY ANALYSIS IN CONTROL SYSTEMS		
Q.1		With the help of Routh's stability criterion find the stability of the following	[L5,CO3]	10M
		systems represented by the characteristic equations:		
		(a) $s^4 + 8 s^3 + 18 s^2 + 16s + 5 = 0$.		
		(b) $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0.$		
Q.2		With the help of Routh's stability criterion find the stability of the following	[L5,CO3]	10M
		systems represented by the characteristic equations:		
		(a) $s^5 + s^4 + 2 s^3 + 2 s^2 + 3s + 5 = 0$		
		(b) $9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$		
Q.3			[L3,CO3]	10M
		by $G(s)H(s) = \frac{\kappa}{(s+2)(s+4)(s^2+6s+25)}$ Determine the value of K which will		
		cause sustained oscillations in the closed loop system and what is the		
		corresponding oscillation Frequency.		

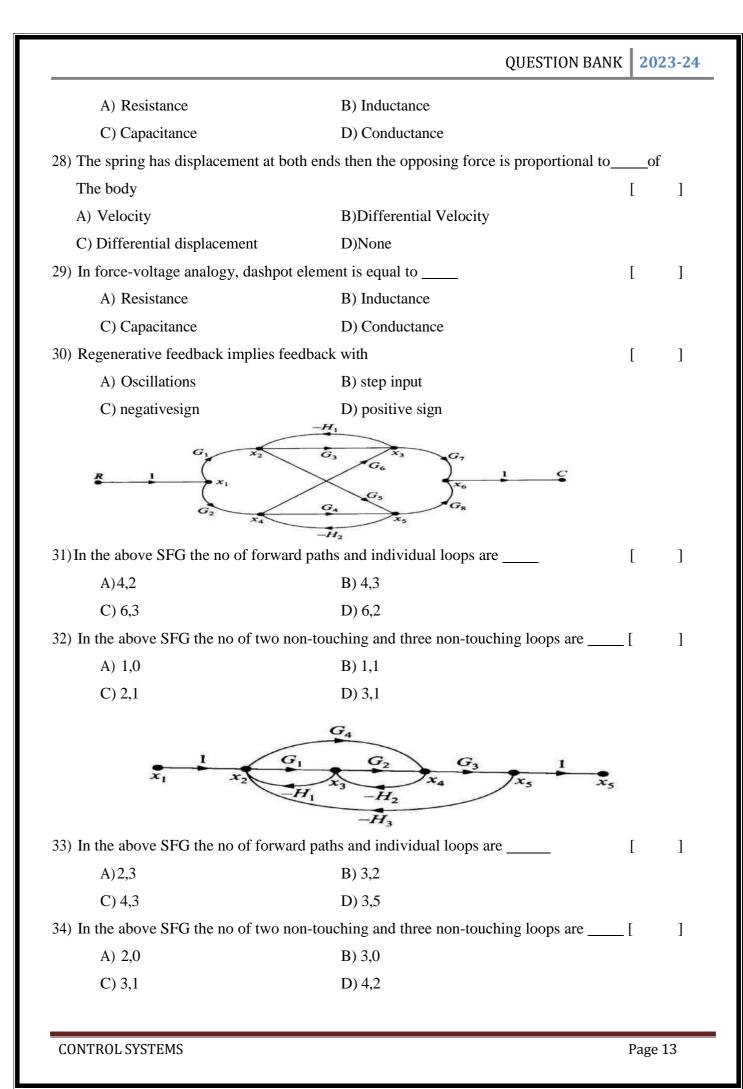
		QUESTION BA	NK 2023 -	24
Q.4		Determine the range of K for stability of unity feedback system whose open loop transfer function is $\mathbf{G}(\mathbf{s}) \mathbf{H}(\mathbf{s}) = \frac{K}{S(S+1)(S+2)}$ using Routh's stability criterion.	[L3,CO3]	10M
Q.5		Explain the procedure for constructing root locus.	[L2,CO3]	10M
Q.6		Sketch the root locus of the system whose open loop transfer function is $G(s) H(s) = \frac{K}{S(S+2) (S+4)}.$	[L3,CO3]	10M
Q.7		Sketch the root locus of the system whose open loop transfer function is $\mathbf{G(s)} \ \mathbf{H(s)} = \frac{\kappa}{S(S^2 + 4S + 13)}$	[L3,CO3]	10M
Q.8		Sketch the root locus of the system whose open loop transfer function is $\mathbf{G}(\mathbf{s}) \mathbf{H}(\mathbf{s}) = \frac{K (S+9)}{S(S^2+4S+11)}$	[L3,CO3]	10M
Q.9		Sketch the root locus of the system whose open loop transfer function is $\mathbf{G(s)} \ \mathbf{H(s)} = \frac{\mathbf{K}(S^2 + 6S + 25)}{S(S+1) \ (S+2)}$	[L3,CO3]	10M
Q.10		Sketch the root locus of the system whose open loop transfer function is $G(s)H(s) = \frac{K}{S(S^2+6S+10)}$	[L3,CO3]	10M
Q.11	i)	Explain BIBO stability?	[L12,CO3]	2M
	ii)	What is the necessary condition for stability?	[L2,CO3]	2M
	iii)	Define root locus?	[L1,CO3]	2M
	iv)	What is centroid? How the centroid is calculated?	[L2,CO3]	2M
	v)	What is limitedly stable system?	[L2,CO3]	2M
		<u>UNIT-IV</u>		
		FREQUENCY RESPONSE ANALYSIS		
Q.1		Sketch the Bode plot for the following transfer function $G(s)H(s) = \frac{K e^{-0.1s}}{S(S+1)(1+0.1S)}$	[L3,CO4]	10M
Q.2		Sketch the Bode plot for the system having the following transfer function	[L3,CO4]	10M
		$\mathbf{G}(\mathbf{s}) = \frac{15 (S+5)}{S(S^2 + 16S + 100)}$		
COI	NTR	DL SYSTEMS	Page 6	

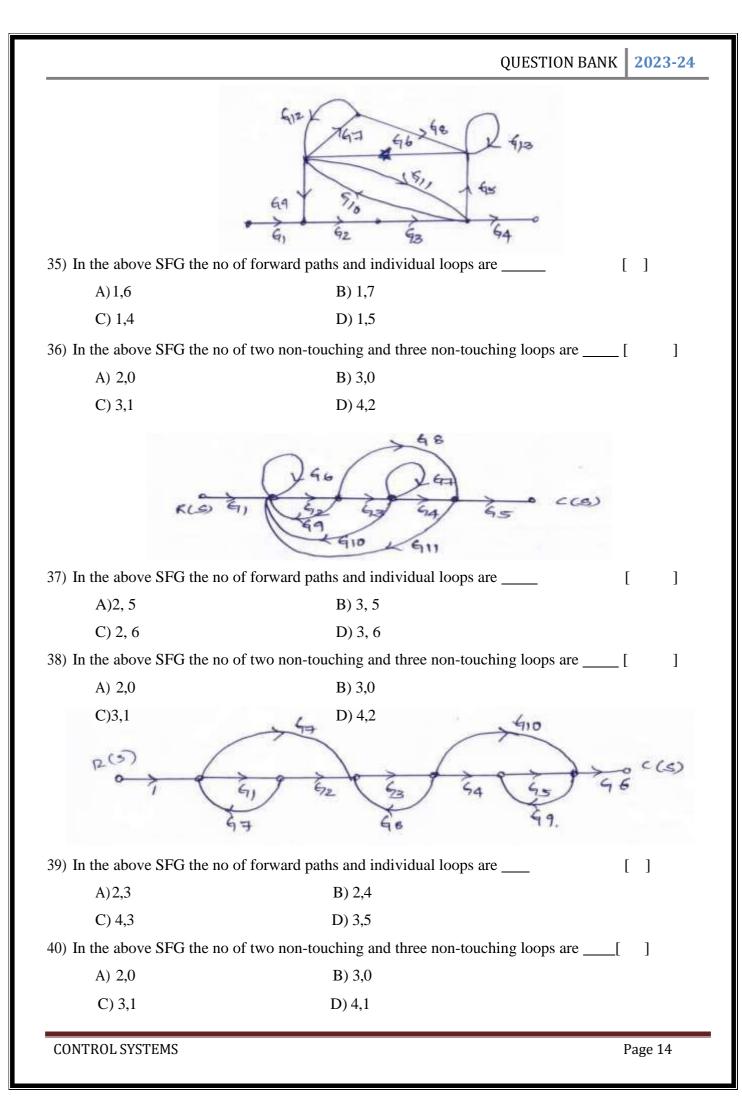
		QUESTION BA	NK 2023 -	24
Q.3	a.	Define and derive the expression for resonant frequency.	[L1,CO4]	5M
	b.	Draw the magnitude bode plot for the system having the following	[L3,CO4]	5M
		transfer function: $G(s) H(s) = \frac{2000 (S+1)}{S(S+10) (S+40)}$		
Q.4		Derive the expressions for resonant peak and resonant frequency and	[L3,CO4]	10M
		hence establish the correlation between time response and frequency		
		response.		
Q.5		Draw the Bode plot for the following Transfer Function $G(s) H(s) =$	[L3,CO4]	10M
		$\frac{20(0.1S+1)}{S^2(0.2S+1) (0.02S+1)}$		
		From the bode plot determine (a) Gain Margin (b) Phase Margin (c)		
		Comment on the stability		
Q.6	a.	Given ξ = 0.7 and ω_n = 10 rad/sec. Calculate resonant peak, resonant	[L3,CO4]	5M
		frequency and bandwidth.		
	b.	Sketch the polar plot for the open loop transfer function of a unity feedback	[L3,CO4]	5M
		system is given by $G(s) = \frac{1}{S(1+S)(1+2S)}$. Determine Gain Margin & Phase		
		Margin.		
Q.7		A system is given by $G(s) H(s) = \frac{(4S+1)}{S^2(S+1)(2S+1)}$ Sketch the nyquist plot and determine the stability of the system.	[L3,CO4]	10M
Q.8		Draw the Nyquist plot for the system whose open loop transfer function	[L3,CO4]	10M
		is, $G(s)H(s) = \frac{K}{S(S+2)(S+10)}$. Determine the range of K for which closed loop		
		system is stable.		
Q.9		Obtain the transfer function of Lead Compensator, draw pole-zero plot and write the procedure for design of Lead Compensator using Bode plot.	[L3,CO4]	10M
Q.10		Obtain the transfer function of Lag Compensator, draw pole-zero plot and write the procedure for design of Lag Compensator using Bode plot.	[L3,CO4]	10M
Q.11	i)	Define phase margine ?	[L1,CO4]	2M
	ii)	Write the expression for resonant peak and resonant frequency?	[L3,CO4]	2M
	iii)	What is phase and gain cross over frequency?	[L2,CO4]	2M
	iv)	What are the frequency domain specifications?	[L2,CO4]	2M
	v)	What is frequency response?	[L2,CO4]	2M

<u>UNIT-V</u>


STATE SPACE ANALYSIS

Q.8	a.	State the properties of STM.	[L1,CO5]	3M
		G(s) H(s) = $\frac{(75^2+125+8)}{(5^3+65^2+115+9)}$		
Q.7		Obtain a state model for the system whose Transfer function is given by	[L2,CO5]	10M
	b.	Diagonalize the following system matrix $A = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \end{pmatrix}$ 1 & -1 & 3	· ·]	
		from the state model. $X = Ax + Bu$ and $y = Cx + Du$	[L3,CO5]	5M
ي.0	a.	•	[L3,CO3]	5111
Q.6	a.	Determine: (i) The Eigen Values. (ii) The State Transition Matrix. Derive the expression for the transfer function and poles of the system	[L3,CO5]	5M
		• 0 1 0 0 X = (0 0 1)X + (0) U and Y = (1 0 0)X -6 -11 -6 1		
	υ.	 A state model of a system is given as: 0 1 0 0 	[L3,CO5]	JIVI
4.5	b.	-		5M
Q.5	a.	Find state variable representation of an armature controlled D.C.motor.	[L2,CO5]	5M
	b.	Diagonalize the following system matrix $A = \begin{pmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \end{pmatrix}$ 3 & 2 & 4		
		0 6 -5	[L3,CO5]	5M
Q.4	a.	State the properties of State Transition Matrix.	[L1,CO5]	5M
		(b) Compute the STM		5M
		(a) Find the transfer function of the system and Stability of the system.		5M
		$X_1 = -3 x_1 + x_2; X_2 = -2 x_1 + u; Y = x_1$		
Q.3		A system is characterized by the following state space equations:	[L3,CO5]	
		(b) Solution of the state equation.		
		transition matrix		
		and the initial conditions are $\mathbf{X}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Solve the following (a) State		
-		For the state equation: $\dot{X} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \\ 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbf{U}$ with the unit step input		
Q.2		equations Earth state constiant $\dot{\mathbf{x}} = (0 + 1)\mathbf{x} + 0$. It with the unit star input	[L3,CO5]	10M
Q.1		Determine the Solution for Homogeneous and Non homogeneous State	[L3,CO5]	


		QUESTION BA	NK 2023 -	24
	b.	For the state equation: $\dot{X} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U$ when, $X(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.	[L2,CO5]	7M
		Find the solution of the state equation for the unit step input.		
Q.9	a.	Find the state model of the differential equation is y + 2y + 3y + 4y = u	[L2,CO5]	5M
	b.	Diagonalize the following system matrix A = $\begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \end{pmatrix}$ -12 -7 -6	[L1,CO5]	5M
Q.10	a.	Define state, state variable, state equation.	[L1,CO5]	5M
	b.	Derive the expression for the transfer function from the state model.	[L1,CO5]	5M
		$\mathbf{\dot{X}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ and $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$		
Q.11	i)	List out the properties of STM?	[L1,CO5]	2M
	ii)	Write the state equation?	[L3,CO5]	2M
	iii)	Define state variable?	[L2,CO5]	2M
	iv)	What is Diagonalize matrix?	[L2,CO5]	2M
	v)	Write the formula for solutions of state equation?	[L3,CO5]	2M


Prepared by: J.Gowrishankar & Hari

	QUESTION BAN	IK 20	23-24
	<u>UNIT –I</u>		
COM	NTROL SYSTEMS CONCEPTS		
1) In controlsystems the co	ontrol action is dependent on the desired output	[]
A) Open loop	B) Closed loop		
C) Both (A) & (B)	D) None		
2) The Transfer function is the ratio	of	[]
A) $L[O/P]$ to $L[I/P]$	B) L[I/P] to L[O/P] with Zero initial cond	itions	
C) $L[I/P]$ to $L[O/P]$	D) L[O/P] to L[I/P] with Zero initial cond	itions	
3) For Impulse input, the output resp	onse $C(s)$ is equal to.	[]
A) R (s)	B) E(s)		
C) G(s)	D) B(s)		
4) The mass will offer an opposing f	orce whichis proportionalof the body	[]
A) Displacement	B) Velocity		
C) Acceleration	D) None		
5) The Dash-pot has displacement at	both ends then the opposing force is proportional	to []
of the body			
A) Velocity	B)Differential Velocity		
C) Differential displacement	D) None		
6) Block diagrams can be used used	to represent	[]
A) Linear systems	B)Non-Linear systems		
C) Both (A) & (B)	D) None		
7) Three blocks with gains 2,-5and1	${f 0}$ are connected in parallel. The total gain is	[]
A) -100	B) -07		
C) 100	D) 07		
8)converts the angular	position of the shaft into electrical signal	[]
A) DCServomotorC) Tacho generator	B) AC Servomotor D) Synchro		
9) The C.E of an armature controlled	dc servomotor isorder equation	[]
A) First	B) Second		
C) Third	D) Zero		
r o F	$\begin{array}{c} 5 \\ 2 \\ -1 \\ -1 \\ -1 \end{array}$		
CONTROL SYSTEMS		Page	10

	QUESTION B		23-2
16) The dash-pot will offer an opposing	g force which is proportionalof the body	[]
A) Velocity	B)Differential Velocity		
C) Differential displacement	D)None		
17) The viscous friction co-efficient, in	force-voltage analogy, is analogous to	[]
A)Charge	B) resistance		
C) reciprocal of inductance	D) reciprocal of conductance		
18) In force-voltageanalogy, velocity is	analogous to	[]
A) Current	B) charge		
C) inductance	D) capacitance		
19) AC servomotor differs with normal	induction motor in	[]
A) Small X/R ratio	B) large X/R ratio		
C) linear speed-torque	D) both A) and C)		
20)A.C. servomotor is basically a	motor	[]
A) Universal	B) single phase induction		
C) two phase induction	D) three phase induction		
21) Synchro is basicallya		[]
A)2-phaseIM	B) 3-phase IM		
C) 3-phase alternator	D) Transformer		
22) For a second order undamped syste	m, the poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
23) AC servomotor differs with normal	inductionmotor in[]		
A) Small X/R ratio	B) large X/R ratio		
C) linear speed-torque	D) both (A) and (C)		
24) In force-currentanalogy, Mass elem	ent is equal to	[]
A) Resistance	B) Inductance		
C) Capacitance	D) Conductance		
25) The viscous friction co-efficient, in	force-voltage analogy, is analogous to	[]
A)Charge	B) resistance		
C) reciprocal of inductance	D) reciprocal of conductance		
26) In force-voltage analogy, displacen	nent is analogous to	[]
A) Current	B) charge		
C) inductance	D) capacitance		
	ement is equal to	_	

	QUESTION	BANK 20	23-24
	<u>UNIT-II</u>		
<u>'</u>	TIME RESPONSE ANALYSIS		
1) For Type-1 system the steady sta	ate error due to step input is equal to	[]
A) Infinity	B) Zero		
C)One	D) Constant		
2) A system has the following T.FC	$G(s) = \frac{200(s+5)(s+50)}{s^4(s+10)(s^2+3s+10)}$		
The order and type of the syste	em are respectively	[]
A) 4& 7	B) 4& 9		
C) 7& 4`	D) 9& 4		
3) Which of the following systems	is generally preferred	[]
A) Undamped	B) Under damped		
C) Critically damped	D) Over damped		
4) The damping frequency of oscill	ation is given by	[]
A) $W_d = W_r \sqrt{1-\xi^2}$	B) $\mathbf{W}_{\mathbf{d}}=\mathbf{W}_{\mathbf{r}}\sqrt{1+\xi^{2}}$		
C) $W_d = W_n \sqrt{1-\xi^2}$	D) \mathbf{W}_{d} = $\mathbf{W}_{n}\sqrt{1+\xi^{2}}$		
5) For a second order critically dan	nped system, the poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
6) The solution of the differential e	quation $x^2+2x+2=0$ is	[]
A) Oscillatory	B) over damped		
C) under damped	D) critically damped		
7)Given a unity feedback system v	with $G(s)=K/s(s+4)$, the value of K for damping	ratio of 0.5	is
A)1	B)4	[]
C)16	D)64		
8)Due to the derivative control, the	rise time is	[]
A)Reduced	B) increased		
C) not effected	D) zero		
9) The effect of addition of pole at	origin, increases the system	[]
A) Order	B)Type		
C) Order and type	D) none		
10) The type 2 system has	at the origin.	[]
A) No net pole	B) net pole		
C) simple pole	D) two poles		
CONTROL SYSTEMS		Page	15

	QUESTION BANK	20	23-2
11) The position and velocity error constant	ts of a type-2 system are	[]
A) Constant, constant	B) constant, infinity		
C) zero, constant	D) infinity, infinity		
12) Velocity error constant of a system is r	neasured when the input to the system is unit	[]
A) Parabolic	B) ramp		
C) impulse	D) step		
13)In case of type-1 system steady state en	ror for parabolic input is	[]
A) Unity	B) infinity		
C) zero	D)10		
14) For a second order over damped system, the poles are		[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
15) Position error constant of a system is n	neasured when the input tothesystem is unit	[]
A) Parabolic	B) ramp		
C) impulse	D) step		
16) For Type-1 system the steady state error	or due to step input is equal to	[]
A) Infinity	B) Zero		
C)One	D) Constant		
17) The positional error of the open loop tra	ansfer function $G(s) = 10/((s+2)(s+3))$ with un	ity	
feedback system.		[]
A) 0.075	B) 1		
C) 0.375	D) 0.2		
18) The value of ξ of 0.6 in the step input of a 2 nd order system results in max overshoot of		[]
A) 10	B) 8.54		
C) 9.44	D) 7.55		
19) Order of the given open loop transfer f	unction G(s) = $\frac{K(s+2)}{s^2(s^2+2s+1)}$	[]
A) Zero	B) one		
C)two	D) four		
20) Consider a feedback control system wi	th loop transfer function	[]
$G(s) = \frac{K(1+0.5s)}{s(1+s)(1+2s)}$ The type of the closed	loop system is		
A) zero	B) one		
CONTROL SYSTEMS		Page 16	

QUESTION BANK 2023-24 C) two D) three GATE 1998 21) The settling time of 2nd order system is _____times the time constant of the system. ſ 1 A) One B)Two C) Four D) Six 22) For a second order under damped system, the poles are [] A) Purely imaginary B) complex conjugate C) real & equal D) real & unequal 23) The Laplace transform of impulse function is [] A) zero B) one C)infinity D) none 24) For the unity feedback control with $G(s) = 4/(S^2+8S+4)$, the damping ratio is ſ 1 A) 2 **B**)1 C) 0.707 D) 0.5 25) In time domain analysis response of the system varies w.r.t [] A) Time B) frequency C) both time and frequency D) constant 26) Undamped natural frequency for $S^2+2S+1=0$ is ſ 1 A) Zero B) one C)two D) infinity 27) Order of the given open loop transfer function G(s) = K/(S+1)ſ] A) Zero B) one C)two D) three 28) The effect of addition of pole atorigin, increases the system ſ 1 A) Order B)Type C) Order and type D) none 29) The type 1 system has ______at the origin. ſ 1 A) No net pole B) net pole D) two poles C) simple pole 30) Position error constant of a system is measured when the input to the system is unit __[1 A) Parabolic B) ramp C) impulse D) step 31) The steady state error due to a ramp input for a type two system is ſ 1 A) 0 B) infinity C)4 D)constant Page 17 CONTROL SYSTEMS

The time at which A) 2.7 sec C) 2.3 sec	open loop transfer fun	B) 2.5 sec D) 2.1 sec ction G(s) = $\frac{(s+2)}{s(s^2+2s+1)}$	GATE 200 [4
The time at which A) 2.7 sec C) 2.3 sec	·	D) 2.1 sec	GATE 200	4
The time at which A) 2.7 sec	The output leaches 999			
The time at which	The output leaches 999			
		⁷⁰ OF Its steady state value is	l	
Jy A Casual system ha		tion G(s)= $\frac{1}{(s+2)}$ is excited with 1	ν Γ	
C) complex con		D) imaginary	GATE 199	5
A) real but not		B) real and equal	-	
38) For a 2nd order sys	stem, damping ratio (ξ) is $0 < \xi < 1$, then the roots of the	C.E are [
C) 1/6		D) 6	GATE 200	2
A) 2/6		B) 3		
37) Consider a system	with the T.F G(s) = $\frac{1}{(K_s)}$	$\frac{(s+6)}{(s^2+s+6)}$. Its $\xi = 0.5$ then the value	ue of K is [
C) Under damp		D) undamped	GATE 199	8
A) Overdamped	d	B) Critically damp	ped	
36) If the characteristic	c equation of a closed-l	loop system is $s^2+2s+2=0$, then t	he system is[
C)two		D) three		
A) Zero		B) one		
35) Type of the system	given $G(s) = 2/S^2(2+S)$)is equal to	[
C) 2		D) Infinity	GATE 199	1
A) 0		B) 0.5		
f the input to the syste	em is a unity ramp, the	steady-state error will be		
34) A unity-feedback of	control system has the o	open-loop transfer function G(s)=	$=\frac{4(1+2s)}{s^2(s+2)}$ [
C)∞		D) 1/ <i>K</i> _P	GATE 199 $A(1+2s)$	0
A)0		B) 1/1+ <i>K</i> _P		
33) The steady state err	ror of a stable 'type 0' u	unity feedback system for a unitstep	function is [
,		D)4		
C)3		B)2		

	<u>NIT –III</u> IS IN CONTROL SYSTEMS		
1) When a system is excited by an unbounded in			
Then the system is		, [1
A) Stable	B) unstable	L	J
C) conditionally stable	D) nothing can said about stability		
2) If there is a root locus on real axis between po		[]
A)Break-in point	B) breakaway point	L	-
C)Both	D) none		
3) The OLTF of a unity feedback control system	is $G(s)=K/(S+2)^2$ the CLTF will have		
poles at		[]
A) -2,-2	B) -2,-1		
C)-2 + j, -2 – j	D) -2, 2		
4) The necessary condition of the Routh Hurwitz	stability is	[]
A) Elements in the first column of the rou	th array is positive		
B) coefficients should be zero			
C) both A and B			
D) None			
5) The open loop transfer function of a unity feed	lback control system is given by		
$G(s) = \frac{5(S+1)}{S^2(S+2)}$. The stability characteristics of the o	open loop configuration.	[]
A) stable	B) unstable		
C) conditionally stable	D) marginally stable		
6) If the OLTF of an unity feedback system is the	e ration of numerator polynomial of de	gree 'm	,
And a denominator polynomial of degree 'n' then th	e integer n-m represent the number of	[]
A) Break away points	B) Unstablepoles		
C) Root locus branches	D) Asymptotes		
7) The open loop transfer function of the system	is given by G(s)= $\frac{K}{S(S+2)(S+4)}$.		
Themaximum Value of K for which the unity fee	dback system will be stable.	[]
A) 16	B) 32		
C) 48	D)64		
8) Adding pole resultsgain margin		[]
A) decrease	B) increase		
CONTROL SYSTEMS		Page	19

	QUESTION BANK 2023-	24
C)AorB 9) The rootlocus is a	D) none]
A) time domain approach	B) frequency domain approach	
C) combination of both	D) None	
10) The OLTF of a unity feedback system is g	given as $G(s) = \frac{K(S+2)}{S(S^2+2S+2)}$.	
The angles of root locus Asymptotes are	[]]
A)+90 ⁰ ,-90 ⁰	B)+ $60^{0.}-60^{0}$	
C) $+120^{0}$, -120^{0}	D) $+360^{\circ}, -360^{\circ}$	
11) The no.of. roots of the equation $2S^4 + S^3 + S^$	3 S^2 + 5S + 7 = 0 that lies in the right half of S-plane[]	
A)0	B)1	
C)2	D)3	
12) Loop TF is $K(S+1)(S+2))/((S+4)(S+6))$ for	,	l
A) -1,-2	B)-4,-6	
C)∞, ∞	D)0,0	
13) The number of changes in first column of	Routh array represents []	[
A) Stability	B) unstability	
C) Number of roots lie on right sideof	s-plane D) both b and c	
14) The stability of the system can be increase	ed by adding []	
A) Pole	B) zero	
C) both	D) none	
15) The root locus of system with $G(s) H(s)=1$	$K(S+1)/(S^2 (S+3.6)$ has how many asymptotes[]	ĺ
A) one point	B) two points	
C) +j , -j	D) three points	
16) The roots of the characteristic equation lie	es on the left of S-plane, then system is []	
A) stable	B) unstable	
C) conditionally stable	D) marginally stable	
17) The characteristic equation of a system is	given by S^4 +8 S^3 +12 S^2 +8S+K=0.for the system	
To remain stable, the value of gain K shoul	d be []	I
A) 0	B) 0 < K < 11	
C) K > 11	D) Positive	

18) The open loop transfer function of a unity feedback co	ontrol system is given by		
18) The open loop transfer function of a unity feedback co	ontrol system is given by		
		[]
$G(s)=5(S+1)/S^2$ (S+2). The stability characteristics of the stability characteristic characteris	he closedloopconfiguration.		
A) Stable	B) unstable		
C) conditionally stable	D) marginally stable		
19) The characteristic equation of a feed back control syst	tem is $2S^4 + S^3 + 3S^2 + 5S + 1$	0=0.	
The Numberof rootsin the right half of Splane are		[]
A)0	B)1		
C)2	D)3		
20) The root locus is		[]
A) an algebraic method	B) a graphical method		
C) combination of both	D)None		
21) Break points can be		[]
A) only real	B) only complex		
C) real or complex	D) None		
22) Asymptotes can intersect		[]
A) only on the negativerealaxis	B) only on the positive rea	al axis	
C) anywhere on the real axis	D) imaginary axis		
23) The open loop transfer function of a system is $G(s)H(s)$	s)= k/s(s+1)(s+2). Its centroid	l is at s=	
A)-2.5	B)-4	[]
C)-4.5	D)-1		
24) If the roots of characteristic equation lie on imaginary	axis the system is	[]
A) Stable	B) unstable		
C) Conditionally stable	D) marginally stable		
25) If first entry in any row of Routh array is negative the	system is	[]
A) StableB) unstable			
C) Conditionally stableD) marginally stable			
26) The number of changes in first column of Routh array	v represents	[]
A) StabilityB) unstability			
C) Number of roots lie on right sideof s-planeD) b	ooth B and C		
27) By adding the pole in the transfer function, The rootlo	ocus shift towards	[]
CONTROL SYSTEMS		Page	. 71

QUESTION BANK 2023-24 A) Right half of S plane B) left half of S plane C) imaginary axis D) All 28) If the system output is finite for any finite input, then the system is ſ 1 A) Stable B) unstable C) conditionally stable D) nothing can said about stability ſ 29) Root loci of a system has three asymptotes the systemmay have 1 A) 3 poles and 1 zero B) 4 poles and 2 zeros C) 4 poles and 3 zeros D) 5 poles and 2 zeros 30) If the roots of the characteristic equation have negative real parts, then the system is 1 A) stable B) unstable C) conditionally stable D) marginally stable 31) Loop TF isfor K=0 closed looppoles are at. ſ 1 A)-1.-2 B)-4,-6 **C**) ∞ D)0,0 32) If there is a root locus on real axis between two zeros then there exist_____ [1 A)Break-in point B) breakaway point D) none C)Both 33) The number of roots of $s^3 + 5s^2 + 7s + 3 = 0$ in the left half of the s – plane is 1 ſ A) Zero B) One C) Two D) Three **GATE 1998** 34) An amplifier with resistive negative feedback has two left half plane poles in its open – loop transfer function. The amplifier [1 A) Will always be unstable at high frequency B) Will be stable for all frequency C) May be unstable, depending on the feedback factor D) Will oscillate at low frequency **GATE 2000** 35) The phase margin of a system with the open – loop transfer function $G(s)H(s) = \frac{(1-s)}{(s+1)(s+2)}$ [] A) 0^{0} B) 63.4° C) 90° D) ∞ **GATE 2002** 36) The open – loop transfer function of a unity – gain feedback control system is given by $T(s) = \frac{\kappa}{(s+1)(s+2)}$. The gain margin of the system in dB is given by [] (A) 0**(B)** 1 CONTROL SYSTEMS Page 22

	QUESTION B	ANK 20	23-24
(C) 20	(D) ∞ G	ATE 200	5
37) The gain margin for the system wit	th open – loop transfer function $G(s)H(s) = 2(1 + 1)$	+s)/s ² is []
$(A) \infty$	(B) 0		
(C) 1	(D) $-\infty$ GATE 2	004	
38) If the closed – loop transfer function	on of a control system is given as $T(s) = \frac{(s-s)}{(s+s)}$		
(A) an unstable system	(B) an uncontrollable system	[]
(C) a minimum phase system	(D) a non – minimum phase system	GA	ГЕ 200
	given by $3s^3 + 5s^2 + 6s + K + 10=0$. The cor		
	given by $5s + 5s + 6s + K + 10=0$. The cor	_	
stability is $(A) K > 5$	(B) - 10 < K]
			FF 100
(C) $K > -4$	(D) - 10 < K < -4		ГЕ 198
_	control system has the following characteristi	-	
	s the forward gain of the system. The condition		
oon stability is		[]
loop stability is:		L	L
A)K=0.528	B)2		
	D) none		
A)K=0.528 C)3	D) none <u>UNIT-IV</u>		
A)K = 0.528 C)3	D) none	GA	ГЕ 199
A)K = 0.528 C)3 FREQU 1) A system is unstable when	D) none <u>UNIT-IV</u> JENCY RESPONSE ANALYSIS		
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$	D) none <u>UNIT-IV</u> <u>VENCY RESPONSE ANALYSIS</u> B)ωgc<ωpc	GA	ГЕ 199
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$	D) none <u>UNIT-IV</u> JENCY RESPONSE ANALYSIS	GA ? [FE 199]
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by	D) none <u>UNIT-IV</u> <u>UNIT-IV</u> <u>UNIT-IV</u> <u>B)$\omega_{gc} < \omega_{pc}$ D)$\omega_{gc} = \omega_{pc} = 0$</u>	GA	ГЕ 199
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity	D) none <u>UNIT-IV</u> <u>B)$\omega_{gc} < \omega_{pc}$ D)$\omega_{gc} = \omega_{pc} = 0$ B)0</u>	GA ? [FE 199]
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity C)1	D) none <u>UNIT-IV</u> <u>UNIT-IV</u> <u>UNIT-IV</u> <u>B)$\omega_{gc} < \omega_{pc}$ D)$\omega_{gc} = \omega_{pc} = 0$</u>	GA [FE 199]]
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity C)1 3)The slope of(1+j ω)is	D) none <u>UNIT-IV</u> <u>B($\omega_{gc} < \omega_{pc}$</u> D) $\omega_{gc} = \omega_{pc} = 0$ B)0 D)4	GA ? [FE 199]
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity C)1 3)The slope of(1+j ω)is A) +20db	D) none UNIT-IV DENCY RESPONSE ANALYSIS $B)\omega_{gc} < \omega_{pc}$ $D)\omega_{gc} = \omega_{pc} = 0$ B)0 D)4 B) + 40db	GA [FE 199]]
A) $\kappa = 0.528$ C)3 FREOU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity C)1 3)The slope of(1+j ω)is A) +20db C)-40db	D) none UNIT-IV DENCY RESPONSE ANALYSIS $B)\omega_{gc} < \omega_{pc}$ $D)\omega_{gc} = \omega_{pc} = 0$ B)0 D)4 B) + 40db D)-20db	GA [[FE 199]]
A)K = 0.528 C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity C)1 3)The slope of(1+j ω)is A) +20db C)-40db 4) A unity feedback system G(s)=(10(s))	D) none UNIT-IV DENCY RESPONSE ANALYSIS $B)\omega_{gc} < \omega_{pc}$ $D)\omega_{gc} = \omega_{pc} = 0$ B)0 D)4 B) + 40db	GA [[frequency	FE 199]]
A) $\kappa = 0.528$ C)3 FREQU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity C)1 3)The slope of(1+j ω)is A) +20db C)-40db 4) A unity feedback system G(s)=(10(second))	D) none UNIT-IV ENCY RESPONSE ANALYSIS $B)\omega_{gc} < \omega_{pc}$ $D)\omega_{gc} = \omega_{pc} = 0$ B)0 D)4 B) + 40db D)-20db $+2))/(s^{2} (s+1)(s^{2}+2s+2)). The slope of the low$	GA [[FE 199]]
A)K = 0.528 C)3 FREOU 1) A system is unstable when A) $\omega_{gc} = \omega_{pc}$ C) $\omega_{gc} > \omega_{pc}$ 2) $\xi = 0$, Mr is given by A)Infinity C)1 3)The slope of(1+j ω)is A) +20db C)-40db	D) none UNIT-IV DENCY RESPONSE ANALYSIS $B)\omega_{gc} < \omega_{pc}$ $D)\omega_{gc} = \omega_{pc} = 0$ B)0 D)4 B) + 40db D)-20db	GA [[frequency	FE 199]]

	QUESTION BANK	202	23-2
5) The damping frequency of oscillation is g	given by	[]
$A) \mathbf{W}_{d} = \mathbf{W}_{r} \mathbf{v} 1 - \boldsymbol{\xi}^{2}$	B) W d =W r ν1+ξ ²		
C)W _d =W _n ν1-ξ ²	D) W _d =W _n √1 +ξ ²		
6) The effect of addition of pole increases th	ie system	[]
A) Order	B)Type		
C) Order and type	D) none		
7) At the gain crossover frequency		[]
A)G(jw)H(jw)=0dB	B) $G(jw)H(jw)=1 dB$		
C) $G(jw)H(jw) = -20 \text{ dB}$	D)G(jw)H(jw)=20dB		
8) The reciprocal of the magnitude of OLTF	at phase cross over frequency is called	[]
A) Phase margin	B)gain margin		
C) Phase plot	D) Magnitude plot		
9) Angle of G(jw) H(jw) =0at		[]
A) gain cross over frequency	B) Phase cross over frequency		
C)Both	D)none		
10) From the bode plots it is observed that the	he gain cross over frequency is greater than		
phase cross overfrequency. The system is ca	lled	[]
A) Stable	B)Marginally stable		
C) Conditionally stable	D) Unstable		
11) From the bode plots it is observed that the	he gain cross over frequency is lesser than		
phase crossover frequency. The system is ca	lled	[]
A) Stable	B)Marginally stable		
C) Conditionally stable	D) Unstable		
12) For the pole factor $\frac{1}{(S+5)}$ the cornerfreque	ency is	[]
A) 1/5	B)5		
C)-1/5	D)-5		
13) At the phase crossover frequency $w=10$	rad / sec , G(jw)H(jw)=15 Db .It's gain marg	in is[]
A) 15 dB	B) 0dB		
C)-15dB	D) cannot be predicted		
14) The frequency at which the -3db magnit	ude is zero is called	[]
A)Cut-offrate	B)Cut-offResonant		
C) Cut-off frequency	D)Bandwidth		

	QUESTION BANI	۲ 20	23-24
15)The slope of $(1+j\omega)$ is		[]
A) +20db	B) +40db		
C)-40db	D)-20db		
16) Magnitude of $G(jw) H(jw) = 1$ at		[]
A) gain cross over frequency	B) Phase cross over frequency		
C)Both	D) none		
17)1 DB=		[]
A) $20\log_e G(j\omega)$	B) G(j ω)		
C) $20\log_{10} G(j \omega)$	D) -20log ₁₀ $G(j \omega)$		
18) Order of the given open loop transfer func	etion G(s) = K(S+2) / S^2 (S ² +2S+1)]	[]
A) Zero	B) one		
C)two	D) four		
19) Type of the system given in problem no. 1	4is equal to	[]
A) Zero	B) one		
C)two	D) three		
20) The settling time of II nd order system is	times the time constant of the system.	[]
A)One C) Four	B)Two D) Six		
21) For a second order under damped system,	the poles are	[]
A) Purely imaginary	B) complex conjugate		
C) real & equal	D) real & unequal		
22) A system is unstable when		[]
A)wgc=wpc	B)wgc <wpc< td=""><td></td><td></td></wpc<>		
C)wgc>wpc	D)wgc=wpc=0		
23)Gain cross over frequency is the one at whi	ichG(jω)H(jω)is	[]
A) equal to1	B) equal to-1		
C)>1	D) <-1		
24)The slope of $1/(1+j\omega)$ is		[]
A) +20db	B) +40db		
C)-40db	D)-20db		
25) The phase crossover frequency is the frequ	ency at which the phase of $G(j\omega)$ is	[]
A) 0°	B)90°		
C) 270°	D) 180°		

	QUESTION	BANK 202	23-24
26) The sinusoidal transfer function is obtained b	y replacing 's' by	[]
A)jω	$B)(j\omega)^2$		
$C)(-j\omega)^2$	D)-jω		
27) The effect of addition of pole increases the sy	vstem	[]
A) Order	B)Type		
C) Order and type	D) none		
28) A second order overall transfer functionis giv	ren by $4/(S^2+2S+4)$. Its resonant		
frequencyis		[]
A)2	B)1.414		
C)1.732	D)3		
29) The system with the open loop transfer function	on $G(s)H(s)=1/s(s^2+s+1)$ has a		
gain margin of		[]
A) – 6 dB	B)0Db		
C)3.5Db	D) 6 Db		
30) A system has fourteen poles and two zeros. It	,	magnitude p	olot
having a slope of:		[]
A) – 40 dB/decade	B) – 240 dB/decade		
C) – 280 dB/decade	D)-320dB/decade		
31) The polar plot $G(s)=10/(S+1)^3$ of intercepts re	al axis at $\omega = \omega_0$. Then, the real pa	artand ω_0 are	•
respectivelygiven by:		[]
(A) – 2.5, 1	(B)–5,0.5		
(C)–5,1	(D) - 5, 2		
32) From the Nicholas chart one can determine th	e following quantities pertaining	to a closed le	зор
system:		[]
(A) Magnitude and phase	(B) Band width		
(C) Only magnitude		GATE 1989	
33) The open-loop transfer function of a feedback	control system is $G(s)=1/(S+1)^3$. The gain n	nargin
of the system is		[]
(A) 2	(B)4		
(C) 8	(D) 16	GATE 1991	
34) Non-minimum phase transfer function is defi	ned as the transfer function	[]
(A) which has zero in the right-half s-plan(B) which has zero only in the left-half s-plan			
CONTROL SYSTEMS		Page	26

	QUEST	ION BAN	К 20	23-24
 (C) which has poles in the righ (D) which has poles in the left- 35) The Nyquist plot of loop transfer f 	nt-half s-plane half s-plane function <i>G</i> (<i>s</i>) <i>H</i> (<i>s</i>) of a closed loop contro	ol system	passes	
through the point $(-1, j, 0)$ in the $G(s)$.	H(s)plane.			
The phase margin of the system is of t	the system is	[]	
A) 0 ⁰	B) 45 ⁰			
C) 90 ⁰	D) 180 ⁰	GAT	Г Е: 20 0	4
36) The Nyquist plot of G(S) H(S)for	a closed loop control system, passed thr	ough (-1 <u>,</u>	j 0)	
pointinGHplane. The gain margin of	the system in dB is equal to		[]
(A) infinite	(B) greater than ze	ero		
(C) less than zero	(D) zero		GAT	E 2006
37) In the Bode – plot of a unity feedba	ack control system, the value of phase of	f G(jω) at	the gai	n cross
over frequency is -125° . The phase ma	argin of the system is		[]
(A)–125 ⁰	$(B) - 55^{0}$			
(C)55 ⁰	(D)125 ⁰		GAT	ГЕ 1998
38) In a Bode magnitude plot, which c	one of the following slopes would be exh	ibited ath	igh fre	quency
by 4th order all-pole system?[]				
A) – 80 dB/decade	B) – 40 dB/decade	e		
C) + 40 dB/decade	D) + 80 dB/decad	e GAT	ГЕ: 201	4
39) For the equation, $s^3 - 4s^2 + s + 6 = 0$) the number of roots in the left half ofs	-plane wi	ll be[]
A) Zero	B) One			
C) Two	D) Three	GA	ГЕ: 20()4
40) The gain margin of a unity feed ba	ck control system with the $OLTFG(s) = s$	$+1/s^{2}$	[]
A) 0	B) 1/√2			
C) √ 2	D) 3	GAT	Г Е: 20 0	5
	<u>UNIT-V</u>			
STATE SPACE A	ANALYSIS OF CONTINUOUS SYST	<u>'EMS</u>		
1. Ø(s)is called			[]
A)system matrix	B) state transition matrix			
C) Resolvent Matrix	D) Resolution Matrix			
CONTROL SYSTEMS			Page	27

2. $\emptyset(t)$ is called [] A)system matrix B) state transition matrix C) model matrix D) input matrix 3) The smallest set of variable of a state is called [[A) State B) conditionofstate [[C) Eigen values D) state variables [] 4) Solution of the state equation with conceeding the input is called [] A) Homogenous solution B) non homogeneous solution [] C) both D) none [] [] S) X [*] (t) = AX(t) + BU(t) is called [[] [] A) state model B)stateequation C) output equation D)all [[] 6) Given a system represented by equations $X^*(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{4}U(t)$ and Y=1 OX(t) The equivalent transfer function representation G(s) of the system is [] A) G(s)=1/s ² +5s+2 B) G(s)=1/s ² +3s+2 C) G(s)=3/s ² +5s+2 D)none [] 7) Given a system represented by equations $X^*(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is [] <th></th> <th>QUESTION BAN</th> <th>K 20</th> <th>23-2</th>		QUESTION BAN	K 20	23-2
C) model matrix D) input matrix 3) The smallest set of variable of a state is called [] A) State B) conditionofstate C) Eigen values D) state variables 4) Solution of the state equation with conceding the input is called [] A) Homogenous solution B) non homogeneous solution C) both D) none 5) $X^{*}(t) = AX(t) + BU(t)$ is called [] A) state model B) state equation C) output equation D) all 6) Given a system represented by equations $X^{*}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \frac{0}{1}U(t)$ and Y=1 0X(t) The equivalent transfer function representation G(s) of the system is [] A) G(s)=1/s ² +5s+2 B) G(s)=1/s ² +3s+2 C) G(s)=3/s ² +5s+2 D) none 7) Given a system represented by equations $X^{*}(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is []] A) $e^{2t}I$ B) $e^{2t}I$ [] A) $e^{2t}I$ B) $e^{2t}I$ [] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e^{0} is equal to []] A) I B)A C) $e^{2t}I$ D) e^{4t} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using []] A) Physical variables B) Phase variables	2. $\emptyset(t)$ is called		[]
3) The smallest set of variable of a state is called [] A) State B) conditionofstate C) Eigen values D) state variables 4) Solution of the state equation with conceding the input is called [] A) Homogenous solution B) non homogeneous solution C) both D) none 5) X'(t) = AX(t) + BU(t) is called [] A) state model B) stateequation C) output equation D)all 6) Given a system represented by equations X'(t) = $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \frac{0}{1}U(t)$ and Y=1 OX(t) The equivalent transfer function representation G(s) of the system is A) G(s)= $1/s^2+5s+2$ B) G(s)= $1/s^2+3s+2$ C) G(s)= $3/s^2+5s+2$ D)none 7) Given a system represented by equations X'(t) = $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is [] A) $e^{2t}I$ D) none 8) Which among the following is a unique model of a system? [] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e^0 is equato [] A) I B)A C) e ^{-At} D) $e^{$	A) system matrix	B) state transition matrix		
A) StateB) condition of stateC) Eigen valuesD) state variables4) Solution of the state equation with conceding the input is called[A) Homogenous solutionB) non homogeneous solutionC) bothD) none5) $X'(t) = AX(t) + BU(t)$ is called[A) state modelB) state equationC) output equationD) all6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + {}^0_1 U(t)$ andY=10X(t) The equivalent transfer function representation G(s) of the system isA) $G(s)=1/s^2+5s+2$ B) $G(s)=1/s^2+3s+2$ C) $G(s)=3/s^2+5s+2$ D) none7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + {}^1_1 U(t)$ The state transition matrix of the system is[A) $e^{2t}I$ B) $e^{2t}I$ C) ID) none8) Which among the following is a unique model of a system?[A) Transfer functionB) State variableC) Both a and bD) None of the above9) According to the property of state transition method, e^0 is equal to	C) model matrix	D) input matrix		
C) Eigen values D) state variables 4) Solution of the state equation with conceding the input is called [] A) Homogenous solution B) non homogeneous solution C) both D) none 5) $X'(t) = AX(t) + BU(t)$ is called [] A) state model B) state equation C) output equation D) all 6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + {}^{0}_{1}U(t)$ and Y=1 OX(t) The equivalent transfer function representation G(s) of the system is [] A) $G(s)=1/s^{2}+5s+2$ B) $G(s)=1/s^{2}+3s+2$ C) $G(s)=3/s^{2}+5s+2$ D) none 7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + {}^{1}_{1}U(t)$ The state transition matrix of the system is [] A) $e^{2t}I$ B) $e^{-2t}I$ [] C) I D) none 8) Which among the following is a unique model of a system? [] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e^{0} is equalit [] A) I B)A C) e^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using [] A) Physical variables B) Phase variables	3) The smallest set of variable of a state is c	alled	[]
4) Solution of the state equation with conceding the input is called [] A) Homogenous solution B) non homogeneous solution C) both D) none 5) $X'(t) = AX(t) + BU(t)$ is called [] A) state model B) state equation C) output equation D) all 6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + {}^{0}_{1}U(t)$ and Y=1 0X(t) The equivalent transfer function representation G(s) of the system is [] A) $G(s)=1/s^{2}+5s+2$ B) $G(s)=1/s^{2}+3s+2$ C) $G(s)=3/s^{2}+5s+2$ D) none 7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + {}^{1}_{1}U(t)$ The state transition matrix of the system is [] A) $e^{2t} I$ B) $e^{-2t} I$ [] C) I D) none 8) Which among the following is a unique model of a system? [] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e^{0} is equalto [] A) I B)A C) e^{-At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using [] A) Physical variables B) Phase variables	A) State	B)conditionofstate		
A) Homogenous solution C) bothB) non homogeneous solution D) none5) $X'(t) = AX(t) + BU(t)$ is called[A) state modelB) state equationC) output equationD) all6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \frac{0}{1}U(t)$ and Y=1Y=1 $0X(t)$ The equivalent transfer function representation G(s) of the system is[]A) $G(s)=1/s^2+5s+2$ B) $G(s)=1/s^2+3s+2$ C) $G(s)=3/s^2+5s+2$ D) none7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is[A) e^{2t} IB) e^{2t} IC) ID) none8) Which among the following is a unique model of a system?[A) Transfer functionB) State variableC) Both a and bD) None of the above9) According to the property of state transition method, e^0 is equal to	C) Eigen values	D) state variables		
C) bothD) none5) $X'(t) = AX(t) + BU(t)$ is called[A) state modelB)stateequationC) output equationD)all6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \frac{0}{1}U(t)$ andY=1 $0X(t)$ The equivalent transfer function representation G(s) of the system isA) $G(s)=1/s^2+5s+2$ B) $G(s)=1/s^2+3s+2$ C) $G(s)=3/s^2+5s+2$ D)none7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is[A) $e^{2t}I$ B) $e^{2t}I$ C) ID) none8) Which among the following is a unique model of a system?[A) Transfer functionB) State variableC) Both a and bD) None of the above9) According to the property of state transition method, e^0 is equal to	4) Solution of the state equation with conce	ding the input is called	[]
5) $X'(t) = AX(t) + BU(t)$ is called [] A) state model B) state equation C) output equation D) all 6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + {1 \over 1} U(t)$ and Y=1 0X(t) The equivalent transfer function representation G(s) of the system is [] A) $G(s)=1/s^2+5s+2$ B) $G(s)=1/s^2+3s+2$ C) $G(s)=3/s^2+5s+2$ D) none 7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + {1 \over 1} U(t)$ The state transition matrix of the system is [] A) $e^{2t}I$ B) $e^{2t}I$ [] C) I D) none 8) Which among the following is a unique model of a system? [] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e^0 is equalto [] A) I massing in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using [] A) Physical variables B) Phase variables	A) Homogenous solution	B) non homogeneous solution		
A) state modelB)state equationC) output equationD)all6) Given a system represented by equations $X^*(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \frac{0}{1} U(t)$ andY=1 $0X(t)$ The equivalent transfer function representation G(s) of the system isA) $G(s)=1/s^2+5s+2$ B) $G(s)=1/s^2+3s+2$ C) $G(s)=3/s^2+5s+2$ D)none7) Given a system represented by equations $X^*(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1} U(t)$ The state transition matrix of the system is[A) $e^{2t}I$ B) $e^{2t}I$ C) ID) none8) Which among the following is a unique model of a system?[A) Transfer functionB) State variableC) Both a and bD) None of the above9) According to the property of state transition method, e^0 is equal to[A) IB)AC) e^{At} D) e^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by takingmeasurements at output?[A) ControllabilityB) ObservabilityC) DifferentiabilityD) Adaptability11) State model representation is possible using[A) Physical variablesB) Phase variables	C) both	D) none		
C) output equationD)all6) Given a system represented by equations $X^{*}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \frac{0}{1}U(t)$ andY=10X(t) The equivalent transfer function representation G(s) of the system is[A) G(s)=1/s^{2}+5s+2B) G(s)=1/s^{2}+3s+2C) G(s)=3/s^{2}+5s+2D)none7) Given a system represented by equations $X^{*}(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is[A) e^{2t} IB) e^{-2t} ID) none[]8) Which among the following is a unique model of a system?[]A) Transfer functionB) State variable[]C) Both a and bD) None of the above[]9) According to the property of state transition method, e^{0} is equalto[]A) IB)A $C e^{-At}$ D) e^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking[]A) ControllabilityB) Observability[]A) ControllabilityD) Adaptability[]A) Physical variablesB) Phase variables[]	$S_{0}X(t) = AX(t) + BU(t)$ is called		[]
6) Given a system represented by equations $X'(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + {1 \over 1} U(t)$ and Y=1 0X(t) The equivalent transfer function representation G(s) of the system is [] A) G(s)=1/s ² +5s+2 B) G(s)=1/s ² +3s+2 C) G(s)=3/s ² +5s+2 D)none 7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + {1 \over 1} U(t)$ The state transition matrix of the system is [] A) e^{2t} I B) e^{-2t} I C) I D) none 8) Which among the following is a unique model of a system? [] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e^0 is equal to [] A) I B)A C) e^{-At} D)- e^{-At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using [] A) Physical variables B) Phase variables	A) state model	B)stateequation		
Y=1 0X(t) The equivalent transfer function representation G(s) of the system isA) $G(s)=1/s^2+5s+2$ B) $G(s)=1/s^2+3s+2$ C) $G(s)=3/s^2+5s+2$ D)none7) Given a system represented by equations $X^*(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is[]A) $e^{2t}I$ B) $e^{-2t}I$ C) ID) none8) Which among the following is a unique model of a system?[]A) Transfer functionB) State variableC) Both a and bD) None of the above9) According to the property of state transition method, e^0 is equal to[]A) IB)AC)e^{Att}D) e^{Att} 10) Which mechanism in control engineering impliesan ability to measure the state by takingmeasurements at output?[]A) ControllabilityD) Adaptability11) State model representation is possible using[]A) Physical variablesB) Phase variables	C) output equation	D)all		
A) $G(s)=1/s^2+5s+2$ B) $G(s)=1/s^2+3s+2$ C) $G(s)=3/s^2+5s+2$ D)none7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is[]A) $e^{2t}I$ B) $e^{2t}I$ C) ID) none8) Which among the following is a unique model of a system?[]A) Transfer functionB) State variableC) Both a and bD) None of the above9) According to the property of state transition method, e^0 is equalto[]A) IB)AC) e^{At} D)- e^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by takingmeasurements at output?[]A) ControllabilityB) ObservabilityC) DifferentiabilityD) Adaptability11) State model representation is possible using[]A) Physical variablesB) Phase variables	6) Given a system represented by equations	$X^{\cdot}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(t) + \frac{0}{1} U(t) \text{ and}$		
C) $G(s)=3/s^2+5s+2$ D)none7) Given a system represented by equations $X^*(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is[]]A) $e^{2t}I$ B) $e^{-2t}I$ C) ID) none8) Which among the following is a unique model of a system?[]]A) Transfer functionB) State variableC) Both a and bD) None of the above9) According to the property of state transition method, e^0 is equal to[]]A) IB)AC) e^{-At} D)- e^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by takingmeasurements at output?[]]A) ControllabilityB) ObservabilityC) DifferentiabilityD) Adaptability11) State model representation is possible using[]]A) Physical variablesB) Phase variables	Y=1 $0X(t)$ The equivalent transfer fund	ction representation G(s) of the system is	[]
7) Given a system represented by equations $X'(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$ The state transition matrix of the system is [] A) $e^{2t}I$ B) $e^{-2t}I$ [] C) I D) none 8) Which among the following is a unique model of a system? [] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e^0 is equalto [] A)I B)A C) e^{-At} D)- e^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using [] A) Physical variables B) Phase variables	A) $G(s)=1/s^2+5s+2$	B) $G(s)=1/s^2+3s+2$		
The state transition matrix of the system is A) e ^{2t} I B) e ^{2t} I C) I D) none 8) Which among the following is a unique model of a system? (I) A) Transfer function B) State variable C) Both A) Transfer function B) State variable C) Both B) A) In B) A) C) B) B) C) C) B) C) B) C) B) C) C) B) C) D) B) Observability C) Differentiability D) A) Physical variables B) Phase variables	C) $G(s)=3/s^2+5s+2$	D)none		
A) e ^{2t} I B) e ^{-2t} I C) I D) none 8) Which among the following is a unique model of a system? [A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e ⁰ is equalto [A) I B)A C)e ^{-At} D)-e ^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using [A) Physical variables B) Phase variables	7) Given a system represented by equations	$X(t) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \frac{1}{1}U(t)$		
C) I D) none 8) Which among the following is a unique model of a system? [A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e ⁰ is equal to [A) I B)A C)e ^{-At} D)-e ^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using [A) Physical variables B) Phase variables	The state transition matrix of the system	is	[]
8) Which among the following is a unique model of a system? []] A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e ⁰ is equalto []] A) I B)A C) e ^{-At} D)-e ^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability D) Adaptability 11) State model representation is possible using [] A) Physical variables B) Phase variables	A) e^{2t} I	B) e^{-2t} I		
A) Transfer function B) State variable C) Both a and b D) None of the above 9) According to the property of state transition method, e ⁰ is equalto []] A) I B)A C)e ^{-At} D)-e ^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? []] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using []] A) Physical variables B) Phase variables	C) I	D) none		
C) Both a and b D) None of the above 9) According to the property of state transition method, e ⁰ is equalto [A) I B)A C)e ^{-At} D)-e ^{At} 10) Which mechanism in control engineering impliesan ability to measure the state by taking measurements at output? [] A) Controllability B) Observability C) Differentiability D) Adaptability II) State model representation is possible using [A) Physical variables B) Phase variables	8) Which among the following is a unique m	nodel of a system?	[]
A)IB)AC)e ^{-At} D)-e ^{At} 10) Which mechanism in control engineering implies an ability to measure the state by taking measurements at output?[]A) ControllabilityB) ObservabilityC) DifferentiabilityD) Adaptability11) State model representation is possible using[]A) Physical variablesB) Phase variables	C) Both a and b	D) None of the above	ſ	1
C)e ^{-At} D)-e ^{At} 10) Which mechanism in control engineering implies a ability to measure the state by taking measurements at output?[A) ControllabilityB) ObservabilityC) DifferentiabilityD) Adaptability11) State model representation is possible using[A) Physical variablesB) Phase variables		_	L	1
measurements at output? []] A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using []] A) Physical variables B) Phase variables		,		
A) Controllability B) Observability C) Differentiability D) Adaptability 11) State model representation is possible using []] A) Physical variables B) Phase variables	10) Which mechanism in control engineering	g impliesan ability to measure the state by ta	aking	
C) Differentiability D) Adaptability 11) State model representation is possible using []] A) Physical variables B) Phase variables	measurements at output?		[]
11) State model representation is possible using []] A) Physical variables B) Phase variables	A) Controllability	B) Observability		
A) Physical variablesB) Phase variables	C) Differentiability	D) Adaptability		
	11) State model representation is possible us	ing	[]
C) Canonical state variables D) All of the above	A) Physical variables	B) Phase variables		
	C) Canonical state variables	D) All of the above		

A) Input equations	B) Output equations		
C) State trajectory	D) State vector	[]
13) Which among the following plays a cr	rucial role in determining the state of dynamic	system	?
A) State variables	B) State vector		
C) State space	D) State scalar	[-
14) Which among the following are the in	nterconnected units of state diagram representat	tion?	
A) Scalars	B) Adders		
C) Integrators	D) All of the above	[
15) State space analysis is applicable even	n if the initial conditions are	[
A)Zero	B) Non-zero		
C)Equal	D)Notequal		
16) Conventional control theory is applica	able tosystems	[
A)SISO	B) MIMO		
C) Time varying	D) Non-linear		
17) The number of elements in the state v	vector is refered toof the system	[
A) Order	B) Characteristic Equation		
C) Type	D)all		
(8) In $X'(t) = AX(t) + BU(t)$ A is known	n as	[
A) System Matrix	B)InputMatrix		
C) Output Matrix	D) Transmission Matrix		
19) In $X(t) = AX(t) + BU(t)\mathbf{B}$ isknown	n as	[-
A) System Matrix	B)InputMatrix		
C) Output Matrix	D) Transmission Matrix		
20) In $Y(t) = CX(t) + DU(t)C$ isknown	n as	[-
A) System MatrixC) Output Matrix	B)InputMatrix D) Transmission Matrix		
21) $InY(t) = CX(t) + DU(t)D$ isknown	as	[-
A) System Matrix	B)InputMatrix		
C) Output Matrix	D) Transmission Matrix		
22) The state equations and the output equ	uations together are called	[
A) state model	B)stateequation		
C) output equation	D)Dynamic Equation		

	QUESTION BANK	202	3-24
23) The characteristic equation of a state model is g	given by	[]
A) $ \lambda I - A = 0$	B) λI+A =0		
$C) \lambda I-A =1$	D)0		
24) The roots of the characteristic equation are refe	rred to asof the matrix A.	[]
A) state model	B) eigen value		
C) output equation	D)all		
25) The process of obtaining the state diagram of a	system from its transfer function is	[]
A) Diagonalization	B)Phasevariable		
C) Decomposition	D)all		
26) The matrix formed by placing the eigen vectors	together in column-wise is called	[]
A) System Matrix	B) Modal Matrix		
C) Transmission Matrix	D)all		
27) Which theorm states that every square matrix A	satisfies its own characteristic equati	on.[]
A) Cayley-Hamilton	B) Kalman's		
C) Gilberts	D)all		
28) The concepts of controllability &observability	were introduced by	[]
A) Cayley-Hamilton	B)Kalman's		
C) Gilberts	D) all		
29) Controllability & observability can also be deter	mined bymethod.	[]
A) Cayley-Hamilton	B) Kalman's		
C) Gilberts	D) all		
30) The transfer function of a s/m can be obtained f	from its state model by using the	[]
formula C(s)/R(s)=			
$A)C(SI-A)^{-1}B+D$	B)C(SI-A)B+D		
C)C(SI-A) ⁻¹ 31) State model is said to be stable if allits eigen va	D)all lues have	[]
A) positivereal parts	B)Negative real parts		
C)Both	D)None		
32) A state variable system $X'(t) = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} X(t)$	$(t) + \frac{1}{0}U(t)$ with the initial condition		
$X(0) = [-1 3]^{T}$ and the unit step input u(t) has the sta	ate transition matrix	[]
	$\begin{bmatrix} 1 & \frac{1}{3}(e-t-e-3t) \\ e-3t \end{bmatrix}$		

	-0	$\frac{1/3(1-e-3t)}{e-t}$	GATE 2005	
3) The number of ways in which STM can be com	puted	is	[]
A) 2 B) 3 C) 5		D) 6		
4) The state variable description of a linear autono	mous	system is, $X^{o} = AX$ whe	ere X is the two	1
imensional state vector and $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$. The roots of	of the c	characteristic equation a	are []
A) -2 and +2		B) $-j2$ and $+j2$		
C) -2 and -2		D) +2 and +2	GATE 2	2004
5) The state transition matrix for the system $X^{\circ} = A$	4 X wit	h initial state $X(0)$ is	[]
A) $(sI - A)^{-1}$		B) $e^{At}X(0)$		
C) $L^{-1}[(sI - A)^{-1}]$		D) $L^{-1}[(sI - A)^{-1}X(0)]$	GATE 20	02
6) For the system, $X'(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ with $X(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ with $X(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ with $X(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ with $X(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ with $X(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ with $X(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t) + \frac{1}{0}U(t)$ with $X(t) = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} X(t)$ with $X(t)$ with $X(t)$ with $X(t)$ with $X(t$		of the following statem	ents is true []
C) The system is controllable and stable				
D) The system is uncontrollable and stable	2	2	GAT	E 200
7) The transfer function of the system describedby	v d²y/dt	dt = du/dt + 2u		
with <i>u</i> asinput and <i>y</i> asoutputis		2	[]
A) $s+2/s^2+s$	/	$1/s^2+s$		
C) $2/s^2 + s$	D)2s/			
(8) Given a system represented by equations $X(t)$	$=\begin{bmatrix}2\\0\end{bmatrix}$	$\begin{bmatrix} 0\\4 \end{bmatrix} X(t) + \begin{bmatrix} 1\\1 \end{bmatrix} U(t) \text{ with}$	th <i>u</i> as unit imp	oulse
and with zero initial state, the output y , become	es		[]
A) $2e^{2t}$		B) $4e^{2t}$		
C) $2e^{4t}$,	GATE 2002	
(9) Given a system represented by equations $X^{\cdot}(t)$	=[-	$\begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U(t)$]]
A) Stable and controllable	B) St	able but uncontrollable		
C) Unstable but controllable	D) Ui	nstable and uncontrolla	ble GATE 201	.0
0) A function $y(t)$ satisfies the following differentiate	al equa	ation : $dy(t)/dt + y(t) = \delta($	t) where $\delta(t)$ is	the
elta function. Assuming zero initial condition, and	l denot	ing the unit step function	on by $u(t)$,	
(<i>t</i>) can be of the form			[]
A) e^{t}		B) e^{-t}		

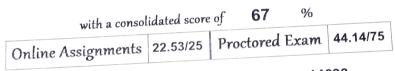
CONTROL SYSTEMS

Page 31

	QUES	TION BANK 2023-24
C) $e^t u(t)$	D) $e^{-t}u(t)$	GATE 2008
	Prepared by: J.G	owrishankar & Hari

NPTEL Online Certification

Elite


ducation

This certificate is awarded to

PATHAN UBEDULLAKHAN HASANKHAN

for successfully completing the course

Programming in Java

Total number of candidates certified in this course: 14693

Jan-Apr 2024

(12 week course)

回初始回

Prof. Haimanti Banerji Coordinator, NPTEL

IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL24CS43S1060600110 To verify the certificate

No. of credits recommended: 3 or 4

This certificate is awarded to

ASHLESHA CHINMAY PATTNAYAK

for successfully completing the course

Big Data Computing

with a consolidated score of **87** %

Online Assignments 22.5/25 Proctored Exam 64.5/75

Total number of candidates certified in this course: 2778

Prof. B. V. Ratish Kumar Chairman, Centre for Continuing Education IIT Kanpur Aug-Oct 2023

(8 week course)

Prof. Satyaki Roy NPTEL Coordinator IIT Kanpur

Indian Institute of Technology Kanpur

an shi e kisa ek (ndi ka ba ∠e (n) e ni p∠ ajaµ', cisi e bi(

The share of the s

NPTEL ONLINE CERTIFICATION

(Funded by the MoE, Govt. of India)

This certificate is awarded to

MAIND RIYAZ KHAJAMAINODDIN

for successfully completing the course

Introduction to Machine Learning

with a consolidated score of			of 78	%		
	Online Assignments	21.54/25	Proctored	Exam	56.63/75	

Total number of candidates certified in this course: 6812

Jul-Sep 2024

(8 week course)

Prof. Haimanti Banerji Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No. NPTE124GS815340200015 To verify the certificate

No. of credits recommended: 2 or 3

Your GATE 2024 Result [EC]

Name		
SNEHA JYOTIRAM KHART	E	
Registration Number		
EC24S72066053		
Gender		
Female		
Parent's/Guardian's nam	ie	
KHARTE JYOTIRAM VITTH	IALRAO	Photograph
Date of Birth (YYYY-MM-	-DD)	Filotograph
1999-07-18		Snehp
Examination Paper		
Electronics and Communic	cation Engineering (EC)	Signature
Marks out of 100 [#]	9.33	
Qualifying Marks ^{##}	25 22.5 16.6 General OBC-NCL/EWS SC/ST/PwD	

[#]Normalized marks in case of multisession papers (CE and CS).

^{##}A candidate is considered qualified if the marks secured are greater than or equal to the qualifying marks mentioned for the category, for which a valid category certificate, if applicable, must be produced along with the Score Card.

